Linear-time encodable and decodable error-correcting codes

We present a new class of asymptotically good, linear error-correcting codes. These codes can be both encoded and decoded in linear time. They can also be encoded by logarithmic-depth circuits of linear size and decoded by logarithmic depth circuits of size O(nlogn). We present both randomized and explicit constructions of these codes.

[1]  Moshe Morgenstern,et al.  Natural bounded concentrators , 1995, Comb..

[2]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[3]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[4]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[5]  Dilip V. Sarwate On the complexity of decoding Goppa codes (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[6]  John E. Savage,et al.  Complexity of decoders-I: Classes of decoding rules , 1969, IEEE Trans. Inf. Theory.

[7]  D. Spielman,et al.  Expander codes , 1996 .

[8]  Nicholas Pippenger,et al.  Self-routing superconcentrators , 1993, J. Comput. Syst. Sci..

[9]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[10]  F. Bien Constructions of telephone networks by group representations , 1989 .

[11]  Jørn Justesen,et al.  On the complexity of decoding Reed-Solomon codes (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[12]  JOHN E. SAVAGE The complexity of decoders-II: Computational work and decoding time , 1971, IEEE Trans. Inf. Theory.

[13]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[14]  Arnold Schönhage Storage Modification Machines , 1980, SIAM J. Comput..

[15]  Nabil Kahale,et al.  On the second eigenvalue and linear expansion of regular graphs , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .