Synthesis of mechanisms for single and hybrid tasks using differential evolution

Abstract The optimal dimensional synthesis for planar mechanisms using differential evolution (DE) is demonstrated. Four examples are included: in the first case, the synthesis of a mechanism for hybrid-tasks, considering path generation, function generation, and motion generation, is carried out. The second and third cases pertain to path generation, with and without prescribed timing. Finally, the synthesis of an Ackerman mechanism is reported. Order defect problem is solved by manipulating individuals instead of penalizing or discretizing the search space for the parameters. A technique that consists in applying a transformation in order to satisfy the Grashof and crank conditions to generate an initial elitist population is introduced. As a result, the evolutionary algorithm increases its efficiency.

[1]  Jorge Angeles,et al.  Least-Square Optimization of Planar and Spherical Four-Bar Function Generator Under Mobility Constraints , 1992 .

[2]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[3]  Hamilton Horth Mabie,et al.  Mechanisms and Dynamics of Machinery , 1963 .

[4]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[5]  Jorge Angeles,et al.  An unconstrained nonlinear least-square method of optimization of RRRR planar path generators , 1988 .

[6]  Roman Starosta,et al.  Application of genetic algorithm and Fourier coefficients (GA-FC) in mechanism synthesis , 2008 .

[7]  J. Angeles,et al.  A Numerically Robust Algorithm to Solve the Five-Pose Burmester Problem , 2002 .

[8]  Radovan R. Bulatović,et al.  On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations , 2009 .

[9]  Jorge Angeles,et al.  Graphical User Interface to Solve the Burmester Problem , 2007 .

[10]  J. J. Uicker,et al.  Linkage Synthesis Using Algebraic Curves , 1986 .

[11]  F. J. Alonso,et al.  Shape optimization for path synthesis of crank-rocker mechanisms using a wavelet-based neural network , 2009 .

[12]  Ahmad Smaili,et al.  Optimum synthesis of hybrid-task mechanisms using ant-gradient search method , 2007 .

[13]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[14]  Emilio J. González-Galván,et al.  Some improvements on the exact kinematic synthesis of spherical 4R function generators , 2009 .

[15]  Robert L. Norton Kinematics and Dynamics of Machinery , 2008 .

[16]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[17]  Man Systems,et al.  1996 Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS , 1996 .

[18]  A. Smaili,et al.  Optimum Synthesis of Mechanisms Using Tabu-Gradient Search Algorithm , 2005 .

[19]  C. Suh,et al.  Optimal design of mechanisms with the use of matrices and least squares , 1973 .

[20]  Sundar Krishnamurty,et al.  Optimal synthesis of mechanisms using nonlinear goal programming techniques , 1992 .

[21]  Panos S. Shiakolas,et al.  On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique , 2005 .

[22]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  J. A. Cabrera,et al.  Optimal synthesis of mechanisms with genetic algorithms , 2002 .

[24]  Reza N. Jazar,et al.  Vehicle Dynamics: Theory and Application , 2009 .

[25]  Jorge Angeles,et al.  Unconstrained nonlinear least-square optimization of planar linkages for rigid-body guidance , 1990 .

[26]  C. H. Suh,et al.  Synthesis of Plane Linkages With Use of the Displacement Matrix , 1967 .

[27]  Panos S. Shiakolas,et al.  On the Optimum Synthesis of Four-bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions , 2002 .

[28]  Wen Yi Lin,et al.  A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar linkage , 2010 .

[30]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[31]  Charles W. Wampler,et al.  Solving a Planar Four-Bar Design Problem Using Continuation , 1990 .

[32]  Bernard Yannou,et al.  Dimensional synthesis of planar mechanisms using neural networks: application to path generator linkages , 2001 .

[33]  Sanjib Kumar Acharyya,et al.  Performance of EAs for four-bar linkage synthesis , 2009 .

[34]  L. Romdhane,et al.  A combined genetic algorithm-fuzzy logic method (GA-FL) in mechanisms synthesis , 2004 .

[35]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[36]  S. Kota,et al.  Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods , 1997 .

[37]  J. A. Cabrera,et al.  Multiobjective constrained optimal synthesis of planar mechanisms using a new evolutionary algorithm , 2007 .

[38]  G. N. Sandor,et al.  Optimization of four-bar function generating mechanisms using penalty functions with inequality and equality constraints , 1975 .

[39]  Mirko Krpan,et al.  Dynamics - Theory and application , 2001 .

[40]  Ali Jamali,et al.  Pareto optimal synthesis of four-bar mechanisms for path generation , 2009 .

[41]  J. McGarva Rapid search and selection of path generating mechanisms from a library , 1994 .

[42]  K. H. Hunt,et al.  Optimum synthesis of planar linkages to generate coupler curves , 1971 .