Detector-decoy high-dimensional quantum key distribution.

The decoy-state high-dimensional quantum key distribution provides a practical secure way to share more private information with high photon-information efficiency. In this paper, based on detector-decoy method, we propose a detector-decoy high-dimensional quantum key distribution protocol. Employing threshold detectors and a variable attenuator, we can promise the security under Gsussian collective attacks with much simpler operations in practical implementation. By numerical evaluation, we show that without varying the source intensity, our protocol performs much better than one-decoy-state protocol and as well as the two-decoy-state protocol in the infinite-size regime. In the finite-size regime, our protocol can achieve better results. Specially, when the detector efficiency is lower, the advantage of the detector-decoy method becomes more prominent.

[1]  Jeffrey H. Shapiro,et al.  Practical high-dimensional quantum key distribution with decoy states , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[2]  Brian J. Smith,et al.  Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. , 2013, Optics express.

[3]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[4]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[5]  Yang Wang,et al.  Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks , 2014, 1406.0387.

[6]  T. Moroder,et al.  Detector decoy quantum key distribution , 2008, 0811.0027.

[7]  Dirk Englund,et al.  Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. , 2013, Physical review letters.

[8]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[9]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[10]  Irfan Khan,et al.  Experimental demonstration of high two-photon time-energy entanglement , 2006 .

[11]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[12]  Richard J. Hughes,et al.  Security of decoy-state protocols for general photon-number-splitting attacks , 2013, 1304.5161.

[13]  Masato Koashi,et al.  Simple and efficient quantum key distribution with parametric down-conversion. , 2007, Physical review letters.

[14]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[15]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[16]  Wan-Su Bao,et al.  Biased decoy-state measurement-device-independent quantum key distribution with finite resources , 2015 .

[17]  John C Howell,et al.  Large-alphabet quantum key distribution using energy-time entangled bipartite States. , 2007, Physical review letters.

[18]  A. Vaziri,et al.  Triggered qutrits for quantum communication protocols. , 2004, Physical review letters.

[19]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[20]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[21]  Jeffrey H. Shapiro,et al.  Entanglement-based quantum communication secured by nonlocal dispersion cancellation , 2014, Physical Review A.

[22]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[23]  Jeffrey H. Shapiro,et al.  Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution , 2013, Quantum Inf. Process..

[24]  Jeffrey H. Shapiro,et al.  High-dimensional quantum key distribution using dispersive optics , 2012, Physical Review A.

[25]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[26]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[27]  Chun Zhou,et al.  Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources. , 2016, Optics express.

[28]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[29]  Ian A Walmsley,et al.  Secure quantum key distribution using continuous variables of single photons. , 2007, Physical review letters.

[30]  Bing Qi Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation. , 2006, Optics letters.

[31]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[32]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[33]  Xiang-Bin Wang A decoy-state protocol for quantum cryptography with 4 intensities of coherent states , 2008 .

[34]  Yang Wang,et al.  Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution , 2016, 1605.04536.

[35]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[36]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[37]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[38]  Yang Wang,et al.  Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations , 2013, 1312.7383.

[39]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[40]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[41]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[42]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[43]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.