A Kleene theorem and model checking algorithms for existentially bounded communicating automata

The behavior of a network of communicating automata is called existentially bounded if communication events can be scheduled in such a way that the number of messages in transit is always bounded by a value that depends only on the machine, not the run itself. We show a Kleene theorem for existentially bounded communicating automata, namely the equivalence between communicating automata, globally cooperative compositional message sequence graphs, and monadic second order logic. Our characterization extends results for universally bounded models, where for each and every possible scheduling of communication events, the number of messages in transit is uniformly bounded. As a consequence, we give solutions in spirit of Madhusudan (2001) for various model checking problems on networks of communicating automata that satisfy our optimistic restriction.

[1]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[2]  Ronitt Rubinfeld,et al.  Fast approximate probabilistically checkable proofs , 2004, Inf. Comput..

[3]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[4]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[5]  Anca Muscholl,et al.  Bounded MSC communication , 2002, Inf. Comput..

[6]  Anca Muscholl,et al.  Infinite-state high-level MSCs: Model-checking and realizability , 2002, J. Comput. Syst. Sci..

[7]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[8]  P. Madhusudan,et al.  Beyond Message Sequence Graphs , 2001, FSTTCS.

[9]  Madhavan Mukund,et al.  A theory of regular MSC languages , 2005, Inf. Comput..

[10]  Anca Muscholl,et al.  Specifying and Verifying Partial Order Properties Using Template MSCs , 2004, FoSSaCS.

[11]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[12]  Edward Ochmanski,et al.  Regular behaviour of concurrent systems , 1985, Bull. EATCS.

[13]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[14]  Anca Muscholl,et al.  Compositional message sequence charts , 2001, International Journal on Software Tools for Technology Transfer.

[15]  Ahmed Bouajjani,et al.  Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..

[16]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[17]  Anca Muscholl,et al.  Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.

[18]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[19]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[20]  Doron A. Peled,et al.  Specification and Verification of Message Sequence Charts , 2000, FORTE.

[21]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces Using QDDs (Extended Abstract) , 1996, CAV.

[22]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..

[23]  Pierre Wolper,et al.  The Power of QDDs (Extended Abstract) , 1997, SAS.

[24]  Rémi Morin,et al.  Recognizable Sets of Message Sequence Charts , 2002, STACS.

[25]  Pierre Wolper,et al.  The Power of QDDs , 1997 .

[26]  Parosh Aziz Abdulla,et al.  Verifying Programs with Unreliable Channels , 1996, Inf. Comput..

[27]  Rani Siromoney,et al.  Unambiguous Equal Matrix Languages , 1972, Inf. Control..

[28]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[29]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[30]  Wei Wei,et al.  A Scalable Incomplete Test for the Boundedness of UML RT Models , 2004, TACAS.

[31]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[32]  P. Madhusudan,et al.  Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.