A Kleene theorem and model checking algorithms for existentially bounded communicating automata
暂无分享,去创建一个
[1] Albert R. Meyer,et al. WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .
[2] Ronitt Rubinfeld,et al. Fast approximate probabilistically checkable proofs , 2004, Inf. Comput..
[3] Philippe Schnoebelen,et al. Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..
[4] Anca Muscholl,et al. Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..
[5] Anca Muscholl,et al. Bounded MSC communication , 2002, Inf. Comput..
[6] Anca Muscholl,et al. Infinite-state high-level MSCs: Model-checking and realizability , 2002, J. Comput. Syst. Sci..
[7] Benedikt Bollig,et al. Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..
[8] P. Madhusudan,et al. Beyond Message Sequence Graphs , 2001, FSTTCS.
[9] Madhavan Mukund,et al. A theory of regular MSC languages , 2005, Inf. Comput..
[10] Anca Muscholl,et al. Specifying and Verifying Partial Order Properties Using Template MSCs , 2004, FoSSaCS.
[11] A. Mazurkiewicz. Concurrent Program Schemes and their Interpretations , 1977 .
[12] Edward Ochmanski,et al. Regular behaviour of concurrent systems , 1985, Bull. EATCS.
[13] Dietrich Kuske,et al. Regular sets of infinite message sequence charts , 2003, Inf. Comput..
[14] Anca Muscholl,et al. Compositional message sequence charts , 2001, International Journal on Software Tools for Technology Transfer.
[15] Ahmed Bouajjani,et al. Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..
[16] Wojciech Zielonka,et al. The Book of Traces , 1995 .
[17] Anca Muscholl,et al. Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.
[18] Daniel Brand,et al. On Communicating Finite-State Machines , 1983, JACM.
[19] Rajeev Alur,et al. Model Checking of Message Sequence Charts , 1999, CONCUR.
[20] Doron A. Peled,et al. Specification and Verification of Message Sequence Charts , 2000, FORTE.
[21] Patrice Godefroid,et al. Symbolic Verification of Communication Protocols with Infinite State Spaces Using QDDs (Extended Abstract) , 1996, CAV.
[22] Philippe Schnoebelen,et al. Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..
[23] Pierre Wolper,et al. The Power of QDDs (Extended Abstract) , 1997, SAS.
[24] Rémi Morin,et al. Recognizable Sets of Message Sequence Charts , 2002, STACS.
[25] Pierre Wolper,et al. The Power of QDDs , 1997 .
[26] Parosh Aziz Abdulla,et al. Verifying Programs with Unreliable Channels , 1996, Inf. Comput..
[27] Rani Siromoney,et al. Unambiguous Equal Matrix Languages , 1972, Inf. Control..
[28] Wieslaw Zielonka,et al. Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..
[29] Patrice Godefroid,et al. Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..
[30] Wei Wei,et al. A Scalable Incomplete Test for the Boundedness of UML RT Models , 2004, TACAS.
[31] Jean Berstel,et al. Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.
[32] P. Madhusudan,et al. Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.