The Herschel Virgo Cluster Survey: X.The relationship between cold dust and molecular gas content in Virgo spirals

Aims. We examine whether dust mass can trace the total or molecular gas mass in late-type Virgo cluster galaxies, and how the environment affects the dust-to-gas ratio and the molecular fraction. Methods. Using the far-infrared emission, as observed by the Herschel Virgo Cluster Survey (HeViCS), and the integrated HI 21-cm and CO J = 1-0 line brightness, we infer the dust and total gas mass for a magnitude limited sample of 35 metal rich spiral galaxies. Environmental disturbances on each galaxy are considered by means of the HI deficiency parameter. Results. The CO flux correlates tightly and linearly with far-infrared fluxes observed by Herschel, especially with the emission at 160, 250 and 350 mu m. Molecules in these galaxies are more closely related to cold dust rather than to dust heated by star formation or to optical/NIR brightness. We show that dust mass establishes a stronger correlation with the total gas mass than with the atomic or molecular component alone. The correlation is non-linear since lower mass galaxies have a lower dust-to-gas ratio. The dust-to-gas ratio increases as the HI deficiency increases, but in highly HI deficient galaxies it stays constant. Dust is in fact less affected than atomic gas by weak cluster interactions, which remove most of the HI gas from outer and high latitudes regions. Highly disturbed galaxies, in a dense cluster environment, can instead loose a considerable fraction of gas and dust from the inner regions of the disk keeping constant the dust-to-gas ratio. There is evidence that the molecular phase is also quenched. This quencing becomes evident by considering the molecular gas mass per unit stellar mass. Its amplitude, if confirmed by future studies, highlights that molecules are missing in Virgo HI deficient spirals, but to a somewhat lesser extent than dust.

[1]  D. Clements,et al.  The dust scaling relations of the Herschel Reference Survey , 2012, 1201.2762.

[2]  G. J. Bendo,et al.  The Herschel Virgo Cluster Survey – VIII. The Bright Galaxy Sample★ , 2011, 1110.2869.

[3]  M. Baes,et al.  The Herschel Virgo Cluster Survey - IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies , 2011, 1106.0618.

[4]  R. Klessen,et al.  Modelling CO emission – II. The physical characteristics that determine the X factor in Galactic molecular clouds , 2011, 1104.3695.

[5]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies , 2011, 1104.0827.

[6]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[7]  P. A. R. Ade,et al.  Planckearly results. XXV. Thermal dust in nearby molecular clouds , 2011, Astronomy & Astrophysics.

[8]  N. Murray STAR FORMATION EFFICIENCIES AND LIFETIMES OF GIANT MOLECULAR CLOUDS IN THE MILKY WAY , 2010, 1007.3270.

[9]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[10]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[11]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey. IV. Resolved dust analysis of spiral galaxies , 2010, 1005.3057.

[12]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey , 2017 .

[13]  D. L. Clements,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel Space Observatory view of dust in M 81 , 2010 .

[14]  S. Glover,et al.  On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds , 2010, 1003.1340.

[15]  N. Rodríguez-Fernández,et al.  The molecular interstellar medium of the Local Group dwarf NGC 6822 - The molecular ISM of NGC 6822 , 2010 .

[16]  Jean-Luc Starck,et al.  FERMI OBSERVATIONS OF CASSIOPEIA AND CEPHEUS: DIFFUSE GAMMA-RAY EMISSION IN THE OUTER GALAXY , 2009, 0912.3618.

[17]  D. L. Clements,et al.  The JCMT Nearby Galaxies Legacy Survey – III. Comparisons of cold dust, polycyclic aromatic hydrocarbons, molecular gas and atomic gas in NGC 2403 , 2009, 0911.3369.

[18]  Bernd Vollmer,et al.  VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I. THE ATLAS AND THE H i PROPERTIES , 2009 .

[19]  J. Young,et al.  12CO(J = 1 − 0) ON-THE-FLY MAPPING SURVEY OF THE VIRGO CLUSTER SPIRALS. I. DATA AND ATLAS , 2009, 0910.3465.

[20]  Laboratoire d'Astrophysique de Marseille,et al.  RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. II. DERIVED DUST PROPERTIES , 2009, 0909.2658.

[21]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[22]  E. Brinks,et al.  HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY , 2009, 0905.4742.

[23]  G. Gavazzi,et al.  MOLECULAR HYDROGEN DEFICIENCY IN H i-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION , 2009, 0903.3950.

[24]  France.,et al.  Ram-pressure stripped molecular gas in the Virgo spiral galaxy NGC 4522 , 2008, 0809.5178.

[25]  U. California,et al.  The relationship between gas content and star formation rate in spiral galaxies. Comparing the local field with the Virgo cluster , 2008, 0808.0093.

[26]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[27]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[28]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[29]  G. J. Bendo,et al.  Variations in 24-μm morphologies among galaxies in the Spitzer Infrared Nearby Galaxies Survey: new insights into the Hubble sequence , 2007, 0707.1303.

[30]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[31]  F. Combes,et al.  Star formation efficiency in galaxy interactions and mergers: a statistical study , 2007, astro-ph/0703212.

[32]  A. Hirota,et al.  Nobeyama CO Atlas of Nearby Spiral Galaxies: Distribution of Molecular Gas in Barred and Nonbarred Spiral Galaxies , 2007, 0705.2678.

[33]  A. Bolatto,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD: FIR EMISSION AND COLD GAS IN THE SMC , 2006 .

[34]  M. R. Haas,et al.  Abundance Gradients in the Galaxy , 2006 .

[35]  G. Gavazzi,et al.  Environmental Effects on Late‐Type Galaxies in Nearby Clusters , 2006, astro-ph/0601108.

[36]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[37]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[38]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[39]  G. Gavazzi,et al.  Introducing GOLDMine: A new galaxy database on the WEB , 2002, astro-ph/0212257.

[40]  W. Couch,et al.  Passive Spiral Formation from Halo Gas Starvation: Gradual Transformation into S0s , 2002, astro-ph/0206207.

[41]  Italy.,et al.  Dust-to-gas ratio and star formation history of blue compact dwarf galaxies , 2002, astro-ph/0204316.

[42]  G. Gavazzi,et al.  Molecular gas in normal late-type galaxies ? , 2002 .

[43]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[44]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[45]  J. Young The Efficiency of Star Formation in Galaxies as a Function of Galaxy Size and Environment , 1999 .

[46]  Heidelberg,et al.  The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully—Fisher distance determinations , 1998, astro-ph/9812275.

[47]  A. Ferrara,et al.  Dust-to-Gas Ratio and Metal Abundance in Dwarf Galaxies , 1997, astro-ph/9705037.

[48]  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[49]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[50]  John M. Carpenter,et al.  The FCRAO Extragalactic CO Survey. I. The Data , 1995 .

[51]  B. Elmegreen The H to H2 transition in galaxies - Totally molecular galaxies , 1993 .

[52]  Judith S. Young,et al.  The Effects of Environment on the Molecular and Atomic Gas Properties of Large Virgo Cluster Spirals , 1989 .

[53]  P. Solomon,et al.  Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies , 1988 .

[54]  A. Stark,et al.  Molecules in galaxies. IV - Molecular and atomic hydrogen in Virgo cluster galaxies , 1987 .

[55]  R. Wilson,et al.  Molecules in Galaxies. III. The Virgo Cluster , 1986 .

[56]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[57]  R. Giovanelli,et al.  Gas deficiency in cluster galaxies: a comparison of nine clusters , 1985 .

[58]  R. Giovanelli,et al.  Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample , 1984 .

[59]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[60]  Peter Nilson,et al.  Uppsala general catalogue of galaxies , 1973 .

[61]  E. Salpeter,et al.  Molecular Hydrogen in H i Regions , 1971 .

[62]  Edwin E. Salpeter,et al.  THE INTERSTELLAR ABUNDANCE OF THE HYDROGEN MOLECULE. I. BASIC PROCESSES , 1963 .