On Quantum and Classical BCH Codes

Classical Bose-Chaudhuri-Hocquenghem (BCH) codes that contain their (Euclidean or Hermitian) dual codes can be used to construct quantum stabilizer codes; this correspondence studies the properties of such codes. It is shown that a BCH code of length n can contain its dual code only if its designed distance delta=O(radicn), and the converse is proved in the case of narrow-sense codes. Furthermore, the dimension of narrow-sense BCH codes with small design distance is completely determined, and - consequently - the bounds on their minimum distance are improved. These results make it possible to determine the parameters of quantum BCH codes in terms of their design parameters

[1]  Dwijendra K. Ray-Chaudhuri,et al.  Further Results on Error Correcting Binary Group Codes , 1960, Inf. Control..

[2]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  F. Lemmermeyer Error-correcting Codes , 2005 .

[4]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[5]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[6]  Yue Dianwu,et al.  On the dimension and minimum distance of BCH codes over GF(q) , 1996 .

[7]  Pascale Charpin,et al.  Open problems on cyclic codes , 2009 .

[8]  Dian-Wu Yue,et al.  Minimum cyclotomic coset representatives and their applications to BCH codes and Goppa Codes , 2000, IEEE Trans. Inf. Theory.

[9]  N. Zierler,et al.  A Class of Error-Correcting Codes in $p^m $ Symbols , 1961 .

[10]  Pradeep Kiran Sarvepalli,et al.  Primitive Quantum BCH Codes over Finite Fields , 2006, 2006 IEEE International Symposium on Information Theory.

[11]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[14]  Henning Stichtenoth,et al.  Generalized Hamming weights of trace codes , 1994, IEEE Trans. Inf. Theory.

[15]  I. Shparlinski,et al.  Character Sums with Exponential Functions and their Applications: Introduction , 1999 .

[16]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[17]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[18]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[19]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[20]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[21]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[22]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[23]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.