Multiresolution Tensor Decomposition for Multiple Spatial Passing Networks

This article is motivated by soccer positional passing networks collected across multiple games. We refer to these data as replicated spatial passing networks---to accurately model such data it is necessary to take into account the spatial positions of the passer and receiver for each passing event. This spatial registration and replicates that occur across games represent key differences with usual social network data. As a key step before investigating how the passing dynamics influence team performance, we focus on developing methods for summarizing different team's passing strategies. Our proposed approach relies on a novel multiresolution data representation framework and Poisson nonnegative block term decomposition model, which automatically produces coarse-to-fine low-rank network motifs. The proposed methods are applied to detailed passing record data collected from the 2014 FIFA World Cup.

[1]  E. Kolaczyk Bayesian Multiscale Models for Poisson Processes , 1999 .

[2]  David Dunson,et al.  Bayesian Factorizations of Big Sparse Tensors , 2013, Journal of the American Statistical Association.

[3]  Morten Mørup,et al.  Nonparametric Bayesian modeling of complex networks: an introduction , 2013, IEEE Signal Processing Magazine.

[4]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[5]  Daniele Durante,et al.  Bayesian Inference and Testing of Group Differences in Brain Networks , 2014, 1411.6506.

[6]  Kirk Goldsberry,et al.  A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes , 2014, 1408.0777.

[7]  Joel E. Cohen,et al.  Nonnegative ranks, decompositions, and factorizations of nonnegative matrices , 1993 .

[8]  J. Duch,et al.  Quantifying the Performance of Individual Players in a Team Activity , 2010, PloS one.

[9]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[10]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[11]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[12]  L. Bornn,et al.  Characterizing the spatial structure of defensive skill in professional basketball , 2014, 1405.0231.

[13]  Mark E. J. Newman,et al.  An efficient and principled method for detecting communities in networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[16]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[17]  Tamara G. Kolda,et al.  On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..

[18]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[19]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[20]  Johan Ugander,et al.  A concave regularization technique for sparse mixture models , 2011, NIPS.

[21]  Matt Taddy,et al.  Multinomial Inverse Regression for Text Analysis , 2010, 1012.2098.

[22]  Ryan P. Adams,et al.  Factorized Point Process Intensities: A Spatial Analysis of Professional Basketball , 2014, ICML.

[23]  Luca Pappalardo,et al.  A network-based approach to evaluate the performance of football teams , 2015 .

[24]  Adrian Baddeley,et al.  Spatial Point Processes and their Applications , 2007 .

[25]  A. Willsky Multiresolution Markov models for signal and image processing , 2002, Proc. IEEE.

[26]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[27]  Daniele Durante,et al.  Nonparametric Bayes Modeling of Populations of Networks , 2014, 1406.7851.

[28]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[29]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[30]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[31]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[32]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[33]  Mingyuan Zhou,et al.  Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction , 2015, AISTATS.

[34]  Jaeyong Lee,et al.  GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.

[35]  Tom A. B. Snijders,et al.  Estimation and Prediction for , 2001 .

[36]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[37]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[38]  Tamara G. Kolda,et al.  Newton-based optimization for Kullback–Leibler nonnegative tensor factorizations , 2013, Optim. Methods Softw..

[39]  D. Hunter,et al.  A Tutorial on MM Algorithms , 2004 .

[40]  Haesun Park,et al.  Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework , 2014, J. Glob. Optim..

[41]  Emily B. Fox,et al.  Sparse graphs using exchangeable random measures , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[42]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[43]  D. Dunson,et al.  Bayesian network‐response regression , 2016, Bioinform..

[44]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[45]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[46]  H. Touchette,et al.  A network theory analysis of football strategies , 2012, 1206.6904.

[47]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.