Primary electrogenic reactions of Photosystem II as probed by the light-gradient method

[1]  A. Melis,et al.  LIGHT‐ABSORPTION AND ELECTRON‐TRANSPORT BALANCE BETWEEN PHOTOSYSTEM II AND PHOTOSYSTEM I IN SPINACH CHLOROPLASTS , 1987 .

[2]  A. Ley,et al.  The extent of energy transfer among Photosystem II reaction centers in Chlorella , 1986 .

[3]  A. Holzwarth FLUORESCENCE LIFETIMES IN PHOTOSYNTHETIC SYSTEMS , 1986 .

[4]  L. Duysens,et al.  Primary-charge separation and excitation of chlorophyll a in Photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy , 1986 .

[5]  R. Grondelle Excitation energy transfer, trapping and annihilation in photosynthetic systems , 1985 .

[6]  M. C. Nuss,et al.  Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin , 1985 .

[7]  H. Trissl,et al.  II. Primary electrogenic reactions in chloroplasts probed by picosecond flash-induced dielectric polarization , 1985 .

[8]  H. Trissl I. Primary electrogenic processes in bacteriorhodopsin probed by photoelectric measurements with capacitative metal electrodes , 1985 .

[9]  H. Witt,et al.  Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accumulation in the O2-evolving complex☆ , 1984 .

[10]  G. Szabó,et al.  Direct measurement of picosecond charge separation in bacteriorhodopsin , 1984, Nature.

[11]  N. Geacintov,et al.  Probing fluorescence induction in chloroplasts on a nanosecond time scale utilizing picosecond laser pulse pairs , 1983 .

[12]  H. J. Gorkom,et al.  Excitation trapping and charge separation in Photosystem II in the presence of an electrical field , 1983 .

[13]  A. Melis,et al.  Structural and functional organization of the photosystems in spinach chloroplasts:Antenna size, relative electron transport capacity, and chlorophyll composition , 1983 .

[14]  H. Trissl Charge displacements in purple membranes adsorbed to a heptane/water interface. Evidence for a primary charge separation in bacteriorhodopsin , 1983 .

[15]  B. Andersson,et al.  Location of photosystem I and photosystem II reaction centers in different thylakoid regions of stacked chloroplasts , 1982 .

[16]  D. Kyle,et al.  A demonstration of the physiological role of membrane phosphorylation in chloroplasts, using the bipartite and tripartite models of photosynthesis , 1982 .

[17]  A. Melis,et al.  Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure , 1981 .

[18]  P. Gräber,et al.  On the rise time and polarity of the photovoltage generated by light gradients in chloroplast suspensions , 1981 .

[19]  L. Duysens,et al.  Transfer and trapping of excitation energy in photosystem II as studied by chlorophyll alpha 2 fluorescence quenching by dinitrobenzene and carotenoid triplet. The matrix model. , 1980, Biochimica et biophysica acta.

[20]  J. Anderson,et al.  Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. , 1980, Biochimica et biophysica acta.

[21]  P. Sétif,et al.  The oxidation-reduction potential of P-700 in chloroplast lamellae and subchloroplast particles. , 1980, Archives of biochemistry and biophysics.

[22]  V. Shuvalov,et al.  Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential , 1980 .

[23]  J. Barber,et al.  An explanation for the relationship between salt‐induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I , 1980 .

[24]  B. Møller,et al.  Characterization of six putative photosystem I mutants in barley , 1980 .

[25]  D. Wettstein,et al.  Macromolecular physiology of plastids XIV.Viridis mutants in barley: Genetic, fluoroscopic and ultrastructural characterisation , 1980 .

[26]  V. N. Panfilov,et al.  The vibrational activation energy of the reaction Br(2P32) with CH3F , 1979 .

[27]  K. Steinback,et al.  Evidence for the role of surface-exposed segments of the light-harvesting complex in cation-mediated control of chloroplast structure and function. , 1979, Archives of biochemistry and biophysics.

[28]  H. Conjeaud,et al.  Primary and secondary electron donors in photosystem II of chloroplasts. Rates of electron transfer and location in the membrane. , 1979, Biochimica et biophysica acta.

[29]  P. Gräber,et al.  Electric evidence for the isolation of inside‐out vesicles from spinach chloroplasts , 1978 .

[30]  V. Shuvalov,et al.  Reduction of pheophytin in the primary light reaction of photosystem II , 1977, FEBS letters.

[31]  W. Arnold,et al.  Two effects of electrical fields on chloroplasts. , 1977, Plant physiology.

[32]  L. Staehelin Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro , 1976, The Journal of cell biology.

[33]  W. Haehnel The ratio of the two light reactions and their coupling in chloroplasts. , 1976, Biochimica et biophysica acta.

[34]  W. L. Butler,et al.  Energy transfer between photosystem II and photosystem I in chloroplasts. , 1975, Biochimica et biophysica acta.

[35]  C F Fowler,et al.  Direct observation of a light-induced electric field in chloroplasts. , 1974, Biochimica et biophysica acta.

[36]  A. Etienne,et al.  Quenching de la chlorophylle in vivo par le m-dinitrobenzene , 1974 .

[37]  H T Witt,et al.  Electrical evidence for the field indicating absorption change in bioenergetic membranes , 1973, FEBS letters.

[38]  S. Izawa,et al.  Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. , 1966, Plant physiology.

[39]  Arana,et al.  Progress in Photosynthesis Research , 1987, Springer Netherlands.

[40]  R. Knox,et al.  Energy transfer and fluorescence mechanisms in photosynthetic membranes , 1987 .

[41]  C. Sybesma,et al.  Advances in Photosynthesis Research , 1984, Advances in Agricultural Biotechnology.