Contribution au développement de la technologie RFID sans puce à haute capacité de codage

Malgre les nombreux avantages que procure la RFID, son deploiement demeure freine par plusieurs facteurs aussi bien economiques, que technologiques. Parmi ces freins, on peut citer le cout encore trop eleve des tags, le manque de fiabilite et de securite dans les informations contenues dans la puce RFID mais aussi les aspects «recyclage» des tags. Dans cette these nous nous focalisons sur le developpement de tags RFID sans puce, qui representent une nouvelle famille de tags bas cout. Avec cette technologie, l'information est extraite a partir de la reponse electromagnetique du tag qui depend uniquement de sa geometrie. Differentes solutions ont ete developpees dans le but d'augmenter la quantite d'informations, de reduire la surface du tag ou encore d'ameliorer la robustesse de detection. Des considerations pratiques tel que l'aspect realisation sur substrat papier, le developpement d'un systeme de detection bas cout, ou encore l'aspect mesure dans un environnement reel on ete adresses afin d'etablir une preuve de concept. Des travaux sur la realisation de capteurs RFID sans puce et sur le moyen de rendre un tag sans puce reconfigurable sont presentes en guise de perspective.

[1]  V. Lubecke,et al.  Low Profile Harmonic Radar Transponder for Tracking Small Endangered Species , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[2]  Etienne Perret,et al.  Novel Compact RFID Chipless Tag , 2011 .

[3]  Xin Wang,et al.  Gas sensing properties of single crystalline porous silicon nanowires , 2009 .

[4]  P. Pons,et al.  Reconfigurable multi-band scatterers for micro-sensors identification , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[5]  Weng Cho Chew,et al.  A broad-band annular-ring microstrip antenna , 1982 .

[6]  Li Yang,et al.  A Novel Conformal RFID-Enabled Module Utilizing Inkjet-Printed Antennas and Carbon Nanotubes for Gas-Detection Applications , 2009, IEEE Antennas and Wireless Propagation Letters.

[7]  Thierry Baron,et al.  Silicon nanowires: Diameter dependence of growth rate and delay in growth , 2010 .

[8]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[9]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[10]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[11]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[12]  Novel chipless RFID tag for conveyor belt tracking using multi-resonant dipole antenna , 2009, 2009 European Microwave Conference (EuMC).

[13]  S. Mukherjee,et al.  Chipless RFID using stacked multilayer patches , 2009, 2009 Applied Electromagnetics Conference (AEMC).

[14]  S. Tedjini,et al.  A compact chipless RFID tag using polarization diversity for encoding and sensing , 2012, 2012 IEEE International Conference on RFID (RFID).

[15]  Nemai Karmakar,et al.  Fully printable multi-bit chipless RFID transponder on flexible laminate , 2009, 2009 Asia Pacific Microwave Conference.

[16]  Etienne Perret,et al.  A fully passive RF switch based on nanometric conductive bridge , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[17]  Manos M. Tentzeris,et al.  A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications , 2009, 2009 3rd European Conference on Antennas and Propagation.

[18]  Aravind Chamarti,et al.  Transmission line delay‐based radio frequency identification (RFID) tag , 2007 .

[19]  A. Blayo,et al.  The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions , 2009, Nanotechnology.

[20]  Tor Sverre Lande,et al.  Continuous-time CMOS quantizer for ultra-wideband applications , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[21]  Yongsheng Chen,et al.  Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors , 2011 .

[22]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[23]  R. Jakoby,et al.  Phase modulation scheme for chipless RFID- and wireless sensor tags , 2009, 2009 Asia Pacific Microwave Conference.

[24]  Etienne Perret,et al.  Metallic letter identification based on radar approach , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[25]  John H. Booske,et al.  Extended cavity perturbation technique to determine the complex permittivity of dielectric materials , 1995 .

[26]  C. Hartmann,et al.  A global SAW ID tag with large data capacity , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[27]  S K Lahiri,et al.  RF MEMS SWITCH: An overview at- a-glance , 2009, 2009 4th International Conference on Computers and Devices for Communication (CODEC).

[28]  A. Chamarti,et al.  Transmission Delay Line Based ID Generation Circuit for RFID Applications , 2006, IEEE Microwave and Wireless Components Letters.

[29]  W. Wiesbeck,et al.  Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements , 1991, Proc. IEEE.

[30]  S. Tedjini,et al.  Design of a chipless RFID sensor for water level detection , 2012, 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics.

[31]  R. Jakoby,et al.  A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications , 2009, 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID.

[32]  Zhiyong Fan,et al.  Palladium/silicon nanowire Schottky barrier-based hydrogen sensors , 2010 .

[33]  Li-Rong Zheng,et al.  An innovative fully printable RFID technology based on high speed time-domain reflections , 2006, Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06..

[34]  Nemai C. Karmakar,et al.  Design of short range chipless RFID reader prototype , 2009, 2009 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

[35]  K. Varahramyan,et al.  A Chipless RFID Sensor System for Cyber Centric Monitoring Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[36]  Wolf-Joachim Fischer,et al.  Ultra-low-power RFID-based sensor mote , 2010, 2010 IEEE Sensors.

[37]  Nemai C. Karmakar,et al.  Design of fully printable planar chipless RFID transponder with 35-bit data capacity , 2009, 2009 European Microwave Conference (EuMC).

[39]  Peng Liu,et al.  Silicon-based PIN SPST RF switches for improved linearity , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[40]  Brian Derby,et al.  A Low Curing Temperature Silver Ink for Use in Ink‐Jet Printing and Subsequent Production of Conductive Tracks , 2005 .

[41]  W. Jakubik,et al.  Hydrogen detection in surface acoustic wave gas sensor based on interaction speed , 2004, Proceedings of IEEE Sensors, 2004..

[42]  G. Marrocco,et al.  RFID tag antenna for passive strain sensing , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[43]  Nemai Karmakar,et al.  4th generation multiresonator-based chipless RFID tag utilizing spiral EBGs , 2010, The 3rd European Wireless Technology Conference.

[44]  S. Tedjini,et al.  New RF identification technology for secure applications , 2010, 2010 IEEE International Conference on RFID-Technology and Applications.

[45]  Etienne Perret,et al.  Terahertz encoding approach for secured chipless radio frequency identification. , 2011, Applied optics.

[46]  S. Tedjini,et al.  A frequency signature based method for the RF identification of letters , 2011, 2011 IEEE International Conference on RFID.

[47]  Etienne Perret,et al.  RFID chipless tag based on multiple phase shifters , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[48]  H. Baker,et al.  Laser Drilling of Copper Foils for Electronics Applications , 2007, IEEE Transactions on Components and Packaging Technologies.

[49]  S. Tedjini,et al.  High-Capacity Chipless RFID Tag Insensitive to the Polarization , 2012, IEEE Transactions on Antennas and Propagation.

[50]  S. Tedjini,et al.  A Fully Printable Chipless RFID Tag With Detuning Correction Technique , 2012, IEEE Microwave and Wireless Components Letters.

[51]  Ahmad Hoorfar,et al.  Theory and experiments on Peano and Hilbert curve RFID tags , 2006, SPIE Defense + Commercial Sensing.

[52]  C. E. Free,et al.  Equivalent circuit for the microstrip ring resonator suitable for broadband materials characterisation , 2008 .

[53]  Bairui Tao,et al.  Investigation of capacitive humidity sensing behavior of silicon nanowires , 2009 .

[54]  L. Duvillaret,et al.  Chipless tags for RF and THz identification , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[55]  Chie Gau,et al.  Silicon nanowire temperature sensor and its characteristic , 2011, 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[56]  N.C. Karmakar,et al.  A Novel Chipless RFID System Based on Planar Multiresonators for Barcode Replacement , 2008, 2008 IEEE International Conference on RFID.

[57]  Yi Jia,et al.  A Prototype RFID Humidity Sensor for Built Environment Monitoring , 2008, 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing.

[59]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Etienne Perret,et al.  RF and THz Identification Using a New Generation of Chipless RFID Tags , 2011 .

[61]  Richard Q. Lee,et al.  A novel nanoionics-based switch for microwave applications , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[62]  Richard S. Potember,et al.  Electrical switching and memory phenomena in Cu‐TCNQ thin films , 1979 .

[63]  Manos M. Tentzeris,et al.  Design and development of a millimetre-wave novel passive ultrasensitive temperature transducer for remote sensing and identification , 2010, The 40th European Microwave Conference.

[64]  Massimiliano Di Ventra,et al.  Practical Approach to Programmable Analog Circuits With Memristors , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[65]  Etienne Perret,et al.  A compact chipless RFID tag with environment sensing capability , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[66]  P. Gonon,et al.  Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 , 2011 .

[67]  이준호,et al.  과도응답 재생을 이용한 레이다 표적물 구별 ( Radar Target Discrimination Using Transient Response Reconstruction ) , 1995 .

[68]  C. Hartmann,et al.  Anti-collision methods for global SAW RFID tag systems , 2004, IEEE Ultrasonics Symposium, 2004.

[69]  Nemai Karmakar,et al.  UWB chipless tag RFID reader design , 2010, 2010 IEEE International Conference on RFID-Technology and Applications.

[70]  S. Tedjini,et al.  Chipless RFID Tag Using Hybrid Coding Technique , 2011, IEEE Transactions on Microwave Theory and Techniques.

[71]  Majid Manteghi,et al.  Pole residue techniques for chipless RFID detection , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[72]  Rahul Bhattacharyya,et al.  Low-Cost, Ubiquitous RFID-Tag-Antenna-Based Sensing , 2010, Proceedings of the IEEE.

[73]  I. Robertson,et al.  RF barcodes using multiple frequency bands , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[74]  Li-Rong Zheng,et al.  Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[75]  S. Mukherjee Chipless Radio Frequency Identification (RFID) Device , 2007, 2007 1st Annual RFID Eurasia.