Constrained Time Delay Estimation Via Zero-Crossing Methods
暂无分享,去创建一个
[1] N. Bershad,et al. Time delay estimation using the LMS adaptive filter--Dynamic behavior , 1981 .
[2] Jeffrey L. Krolik,et al. A comparative study of the LMS adaptive filter versus generalized correlation method for time delay estimation , 1984, ICASSP.
[3] G. Carter,et al. On the simulation of a class of time delay estimation algorithms , 1981 .
[4] R. S. Walker,et al. Synthetic multichannel time series for simulating underwater acoustic noise , 1981, ICASSP.
[5] Peter M. Schultheiss. Some Lessons from Array Processing Theory , 1977 .
[6] Joseph C. Hassab,et al. A quantitative study of optimum and sub-optimum filters in the generalized correlator , 1979, ICASSP.
[7] G. Carter,et al. The generalized correlation method for estimation of time delay , 1976 .
[8] G. Clifford Carter,et al. Estimation of the two‐dimensional spectrum of the space‐time noise field for a sparse line array , 1974 .
[9] G. Tacconi. Aspects of Signal Processing , 1977 .
[10] P. M. Schultheiss,et al. Optimum Passive Bearing Estimation , 1969 .
[11] J. J. Spilker,et al. The Delay-Lock Discriminator-An Optimum Tracking Device , 1961, Proceedings of the IRE.
[12] Peter M. Schultheiss,et al. Optimum Passive Bearing Estimation in a Spatially Incoherent Noise Environment , 1969 .