Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage

[1]  Volodymyr A. Yartys,et al.  Exploits, advances and challenges benefiting beyond Li-ion battery technologies , 2020, 2005.04963.

[2]  M. Heere,et al.  Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review , 2020 .

[3]  M. Hirscher,et al.  How to functionalise metal–organic frameworks to enable guest nanocluster embedment , 2020, Journal of Materials Chemistry A.

[4]  Matteo Brighi,et al.  A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity , 2020, Inorganics.

[5]  H. Schreuders,et al.  Metal Hydride Based Optical Hydrogen Sensors , 2020, Journal of the Physical Society of Japan.

[6]  Yunfeng Zhu,et al.  Lithium migration pathways at the composite interface of LiBH4 and two-dimensional MoS2 enabling superior ionic conductivity at room temperature. , 2020, Physical chemistry chemical physics : PCCP.

[7]  H. Wilkening,et al.  Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[8]  W. Grochala,et al.  A low temperature pyrolytic route to amorphous quasi-hexagonal boron nitride from hydrogen rich (NH4)3Mg(BH4)5. , 2019, Dalton transactions.

[9]  T. Jensen,et al.  Analysis of Dihydrogen Bonding in Ammonium Borohydride , 2019, The Journal of Physical Chemistry C.

[10]  T. Ichikawa,et al.  Vanadium Hydride as Conversion Type Negative Electrode for All-Solid-State Lithium-Ion-Battery , 2019, MATERIALS TRANSACTIONS.

[11]  H. Oguchi,et al.  Epitaxial Film Growth of LiBH4 via Molecular Unit Evaporation , 2019, ACS Applied Electronic Materials.

[12]  C. Zlotea,et al.  TiVZrNb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties , 2019, Molecules.

[13]  K. Shinzato,et al.  Room-Temperature Hydrogen Absorption of Titanium with Surface Modification by Organic Solvents , 2019, The Journal of Physical Chemistry C.

[14]  E. Salager,et al.  Investigation of Mg(BH4)(NH2)-Based Composite Materials with Enhanced Mg2+ Ionic Conductivity , 2019, The Journal of Physical Chemistry C.

[15]  B. Norder,et al.  Direct Comparison of PdAu Alloy Thin Films and Nanoparticles upon Hydrogen Exposure , 2019, ACS applied materials & interfaces.

[16]  Torben R. Jensen,et al.  Full-cell hydride-based solid-state Li batteries for energy storage , 2019, International Journal of Hydrogen Energy.

[17]  A. A. van Well,et al.  Optical hydrogen sensing beyond palladium: Hafnium and tantalum as effective sensing materials , 2019, Sensors and Actuators B: Chemical.

[18]  H. Oguchi,et al.  A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries , 2019, Nature Communications.

[19]  Kasper T. Møller,et al.  Hydrogen sorption in TiZrNbHfTa high entropy alloy , 2019, Journal of Alloys and Compounds.

[20]  D. Rentsch,et al.  Dynamics of the Coordination Complexes in a Solid-State Mg Electrolyte. , 2018, The journal of physical chemistry letters.

[21]  Yong Zhang,et al.  High-entropy functional materials , 2018, Journal of Materials Research.

[22]  H. Fjellvåg,et al.  Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications , 2018, Electrochimica Acta.

[23]  H. Fjellvåg,et al.  MgH2–CoO: a conversion-type composite electrode for LiBH4-based all-solid-state lithium ion batteries , 2018, RSC advances.

[24]  Jessica Lefevr,et al.  Lithium Conductivity and Ions Dynamics in LiBH4/SiO2 Solid Electrolytes Studied by Solid-State NMR and Quasi-Elastic Neutron Scattering and Applied in Lithium–Sulfur Batteries , 2018, The Journal of Physical Chemistry C.

[25]  M. Heere,et al.  Energy research with neutrons (ErwiN) and installation of a fast neutron powder diffraction option at the MLZ, Germany1 , 2018, Journal of applied crystallography.

[26]  H. Fjellvåg,et al.  Understanding Capacity Fading of MgH2 Conversion-Type Anodes via Structural Morphology Changes and Electrochemical Impedance , 2018 .

[27]  H. Fjellvåg,et al.  Reversibility of metal-hydride anodes in all-solid-state lithium secondary battery operating at room temperature , 2018 .

[28]  A. Jain,et al.  Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor , 2018 .

[29]  I. Sârbu,et al.  A Comprehensive Review of Thermal Energy Storage , 2018 .

[30]  Magnus H. Sørby,et al.  Rare Earth Borohydrides - Crystal Structures and Thermal Properties , 2017 .

[31]  M. Hirscher,et al.  Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms , 2017 .

[32]  M. J. van Setten,et al.  Hafnium—an optical hydrogen sensor spanning six orders in pressure , 2017, Nature Communications.

[33]  R. Kühnel,et al.  Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries , 2017, Scientific Reports.

[34]  Lars H. Jepsen,et al.  Metal borohydrides and derivatives - synthesis, structure and properties. , 2017, Chemical Society reviews.

[35]  S. Orimo,et al.  The renaissance of hydrides as energy materials , 2017 .

[36]  M. Fichtner,et al.  SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells , 2017 .

[37]  P. Rizzi,et al.  A comparison of energy storage from renewable sources through batteries and fuel cells: A case study in Turin, Italy , 2016 .

[38]  U. Jansson,et al.  Superior hydrogen storage in high entropy alloys , 2016, Scientific Reports.

[39]  O. Zavorotynska,et al.  Recent progress in magnesium borohydride Mg(BH4)2: Fundamentals and applications for energy storage , 2016 .

[40]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[41]  T. Ichikawa,et al.  Electrochemical Performance of Titanium Hydride for Bulk-Type All-Solid-State Lithium-Ion Batteries , 2016 .

[42]  M. Saunders,et al.  Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks. , 2016, Chemical communications.

[43]  D. Gregory,et al.  Phase behaviour in the LiBH4-LiBr system and structure of the anion-stabilised fast ionic, high temperature phase , 2015 .

[44]  S. Gagliano,et al.  Integration of a PEM fuel cell with a metal hydride tank for stationary applications , 2015 .

[45]  J. Bonnet,et al.  Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries , 2015, Beilstein journal of nanotechnology.

[46]  P. Rizzi,et al.  Hydrogen sorption in the LaNi5-xAlx-H system (0 ≤ x ≤ 1) , 2015 .

[47]  T. Ichikawa,et al.  Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries. , 2015, Chemical communications.

[48]  L. Battezzati,et al.  Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems , 2014 .

[49]  H. R. Moon,et al.  Fabrication of metal nanoparticles in metal-organic frameworks. , 2013, Chemical Society reviews.

[50]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[51]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[52]  S. Enzo,et al.  Effect of Mg–Nb oxides addition on hydrogen sorption in MgH2 , 2011 .

[53]  A. Guéguen,et al.  Influence of the addition of vanadium on the hydrogenation properties of the compounds TiFe0.9Vx and TiFe0.8Mn0.1Vx (x = 0, 0.05 and 0.1) , 2011 .

[54]  Wenchuan Wang,et al.  Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks , 2010 .

[55]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[56]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[57]  Y. Filinchuk,et al.  High-pressure polymorphism as a step towards destabilization of LiBH4. , 2008, Angewandte Chemie.

[58]  S. Orimo,et al.  Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[59]  S. Hino,et al.  Remarkable Improvement of Hydrogen Sorption Kinetics in Magnesium Catalyzed with Nb2O5. , 2006 .

[60]  S. Hino,et al.  Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 , 2006 .

[61]  Stefano Deledda,et al.  Improvement in H-sorption kinetics of MgH2 powders by using fe nanoparticles generated by reactive FeF3 addition , 2005 .

[62]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[63]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[64]  T. Klassen,et al.  Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst , 2003 .

[65]  E. Salager,et al.  Investigation of Mg(BH 4 )(NH 2 )-Based Composite Materials with Enhanced Mg 2+ Ionic Conductivity , 2021 .

[66]  F. Cuevas Synthesis and crystal structures of the AB intermetallic compounds , 2018 .

[67]  D. Gregory,et al.  Phase Behavior in the LiBH4-LiBr System and Structure of the Anion-Stabilized Fast Ionic, High Temperature Phase. , 2016 .

[68]  R. Fischer,et al.  Metal–organic frameworks as hosts for nanoparticles , 2015 .