A semiring-like representation of lattice pseudoeffect algebras
暂无分享,去创建一个
[1] Jiří Rachůnek,et al. A non-commutative generalization of MV-algebras , 2002 .
[2] A. Dvurecenskij,et al. Pseudoeffect Algebras. I. Basic Properties , 2001 .
[3] Ivan Chajda,et al. Commutative basic algebras and coupled near semirings , 2015, Soft Comput..
[4] David J. Foulis,et al. Lattice pseudoeffect algebras as double residuated structures , 2010, Soft Comput..
[5] Antonio di Nola,et al. MV-semirings and their Sheaf Representations , 2013, Order.
[6] Roberto Giuntini,et al. Toward a formal language for unsharp properties , 1989 .
[7] Ivan Chajda,et al. Representing quantum structures as near semirings , 2016, Log. J. IGPL.
[8] Jean B. Nganou,et al. A non-commutative generalization of Łukasiewicz rings , 2016, J. Appl. Log..
[9] Roberto Giuntini,et al. Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics , 2010 .
[10] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[11] Anatolij Dvurecenskij. Lexicographic pseudo MV-algebras , 2015, J. Appl. Log..
[12] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[13] Thomas Vetterlein,et al. Non-Commutative Algebras and Quantum Structures , 2004 .
[14] A. Dvurecenskij,et al. Pseudoeffect Algebras. II. Group Representations , 2001 .
[15] A. Dvurecenskij. Pseudo MV-algebras are intervals in ℓ-groups , 2002, Journal of the Australian Mathematical Society.
[16] Ivan Chajda,et al. A Representation of Lattice Effect Algebras by Means of Right Near Semirings with Involution , 2017 .
[17] Paolo Vitolo. Compatibility and central elements in pseudo-effect algebras , 2010, Kybernetika.
[18] K. Glazek,et al. A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography , 2002 .