Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa.

[1]  G. A. Kerkut,et al.  An electrophysiological, pharmacological and fluorescent study on twelve identified neurones from the brain of Helix aspersa , 1975 .

[2]  Michael O'Shea,et al.  The Anatomy of a Locust Visual Interneurone; the Descending Contralateral Movement Detector , 1974 .

[3]  J. Parmentier Mapping studies of a gastropod brain. , 1973, Brain research.

[4]  N. Strausfeld,et al.  The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.

[5]  H. Gerschenfeld,et al.  Transmitter role of serotonin in identified synapses in Aplysia nervous system. , 1973, Brain research.

[6]  N. Klemm,et al.  Detection of dopamine, noradrenaline and 5-hydroxy-tryptamine in the cerebral ganglion of the desert locust, Schistocerca gregaria Forsk (Insecta: Orthoptera). , 1973, Brain research.

[7]  Kerkut Ga Catecholamines in invertebrates. , 1973 .

[8]  J. E. Vaughn,et al.  CHEMICAL, ENZYMATIC AND ULTRASTRUCTURAL CHARACTERIZATION OF 5‐HYDROXYTRYPTAMINE‐CONTAINING NEURONS FROM THE GANGLIA OF APLYSIA CALIFORNICA AND TRITONIA DIOMEDIA , 1973, Journal of neurochemistry.

[9]  G. A. Kerkut,et al.  Electrophysiological studies on the axon pathways of specified nerve cells in the central ganglia of two insect species, Periplaneta americana and Schistocerca gregaria , 1972 .

[10]  J. Kehoe,et al.  The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia , 1972, The Journal of physiology.

[11]  J. Kehoe,et al.  Ionic mechanism of a two‐component cholinergic inhibition in Aplysia neurones , 1972, The Journal of physiology.

[12]  J. Kehoe Three acetylcholine receptors in Aplysia neurones , 1972, The Journal of physiology.

[13]  N. Osborne,et al.  The effect of electrical stimulation on the levels of free amino acids and related compounds in the snail brain. , 1972, Brain research.

[14]  H. Gainer Electrophysiological behavior of an endogenously active neurosecretory cell. , 1972, Brain research.

[15]  H. Gainer Patterns of protein synthesis in individual, identified molluscan neurons. , 1972, Brain research.

[16]  H. Gainer Effects of experimentally induced diapause on the electrophysiology and protein synthesis patterns of identified molluscan neurons. , 1972, Brain research.

[17]  G. A. Kerkut,et al.  Electrically excitable nerve cell bodies in the central ganglia of two insect species Periplaneta americana and Schistocerca gregaria. Investigation of cell geometry and morphology by intracellular dye injection , 1971 .

[18]  N. Osborne,et al.  Determination of amino acids in single identifiable nerve cells of Helix pomatia. , 1971, The International journal of neuroscience.

[19]  D. Gardner,et al.  Bilateral Symmetry and Interneuronal Organization in the Buccal Ganglia of Aplysia , 1971, Science.

[20]  S. Dewhurst,et al.  METABOLISM OF PUTATIVE TRANSMITTERS IN INDIVIDUAL NEURONS OF APLYSIA CALIFORNICA , 1971, Journal of neurochemistry.

[21]  G. A. Kerkut,et al.  Evidence for a dopamine inhibitory post-synaptic potential in the brain of Helix aspersa. , 1971, Comparative and general pharmacology.

[22]  R. Mccaman,et al.  CHOLINE ACETYLTRANSFERASE IN INDIVIDUAL NEURONS OF APLYSIA CALIFORNICA 1 , 1970, Journal of neurochemistry.

[23]  A. E. Stuart Physiological and morphological properties of motoneurones in the central nervous system of the leech , 1970, The Journal of physiology.

[24]  D. Purves,et al.  Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech , 1970, The Journal of physiology.

[25]  G. Cottrell Direct Postsynaptic Responses to Stimulation of Serotonin-containing Neurones , 1970, Nature.

[26]  G. A. Kerkut,et al.  The occurrence of monoamines in Planorbis corneus: a fluorescence microscopic and microspectrometric study. , 1970, Comparative and general pharmacology.

[27]  J. Lambert,et al.  Action potential shape and frequency as criteria for neuron identification in the snail, Helix aspersa. , 1970, Comparative and general pharmacology.

[28]  G. A. Kerkut,et al.  The location of axonal pathways of identifiable neurones of Helix aspersa using the dye Procion yellow M-4R. , 1970, Comparative biochemistry and physiology.

[29]  N. Osborne,et al.  Subcellular Localization of Serotonin in an Identified Serotonin-containing Neurone , 1970, Nature.

[30]  G. A. Kerkut,et al.  Fluorescent microscopy of the 5HT- and catecholamine-containing cells in the central nervous system of the leech Hirudo medicinalis. , 1969, Comparative biochemistry and physiology.

[31]  A. Gorman,et al.  The Input-Output Organization Of a Pair of Giant Neurones in the Mollusc, Anisodoris Nobilis (MACFARLAND) , 1969 .

[32]  G. Hoyle,et al.  Centrally Generated Nerve Impulse Sequences determining Swimming Behaviour in Tritonia , 1969, Nature.

[33]  G. A. Kerkut,et al.  Long-lasting synaptic inhibition and its transmitter in the snail Helix aspersa. , 1969, Comparative biochemistry and physiology.

[34]  A. Selverston,et al.  Structure and function of identified nerve cells in the crayfish. , 1969, Endeavour.

[35]  D. Baylor,et al.  Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech , 1969, The Journal of physiology.

[36]  S. Rude Catecholamines in the ventral nerve cord of Lumbricus terrestris , 1969 .

[37]  E. Kravitz,et al.  Neuronal Geometry: Determination with a Technique of Intracellular Dye Injecion , 1968, Science.

[38]  D. Baylor,et al.  Specific modalities and receptive fields of sensory neurons in CNS of the leech. , 1968, Journal of neurophysiology.

[39]  N. Frontali Histochemical localization of catecholamines in the brain of normal and drug-treated cockroaches , 1968 .

[40]  E. Kandel,et al.  MORPHOLOGICAL AND FUNCTIONAL PROPERTIES OF IDENTIFIED NEURONS IN THE ABDOMINAL GANGLION OF APLYSIA CALIFORNICA , 1967 .

[41]  M. Cohen,et al.  The Functional Organization of Motor Neurons in an Insect Ganglion , 1967 .

[42]  G. A. Kerkut,et al.  Uptake of DOPA and 5-hydroxytryptophan by monoamine-forming neurones in the brain of Helix aspersa. , 1967, Comparative biochemistry and physiology.

[43]  J. Kehoe Pharmacological Characteristics and Ionic Bases of a Two Component Postsynaptic Inhibition , 1967, Nature.

[44]  A. Willows Behavioral Acts Elicited by Stimulation of Single, Identifiable Brain Cells , 1967, Science.

[45]  D. Potter,et al.  Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. , 1967, Journal of neurophysiology.

[46]  L. Tauc Transmission in invertebrate and vertebrate ganglia. , 1967, Physiological reviews.

[47]  G. A. Kerkut,et al.  Cellular localization of monoamines by fluorescence microscopy in Hirudo medicinalis and Lumbricus terrestris. , 1967, Comparative biochemistry and physiology.

[48]  C. Wiersma,et al.  Command interneurons in the crayfish central nervous system. , 1967, The Journal of experimental biology.

[49]  D. A. Dorsett Giant Neurons and Axon Pathways in the Brain of Tritonia , 1967 .

[50]  G. A. Kerkut,et al.  The effect of ions on the membrane potential of snail neurones. , 1967, Comparative biochemistry and physiology.

[51]  P. Ascher,et al.  Two Different Excitatory Transmitters acting on a Single Molluscan Neurone , 1967, Nature.

[52]  G. A. Kerkut,et al.  The internal chloride concentration of H and D cells in the snail brain , 1966 .

[53]  S. Rude Monoamine‐containing neurons in the nerve cord and body wall of Lumbricus terrestris , 1966, The Journal of comparative neurology.

[54]  G. A. Kerkut,et al.  The effect of dopa, α-methyldopa and reserpine on the dopamine content of the brain of the snail, Helix aspersa , 1966 .

[55]  E R Kandel,et al.  Input organization of two symmetrical giant cells in the snail brain , 1966, The Journal of physiology.

[56]  E. Kandel,et al.  Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. , 1965, The Journal of physiology.

[57]  E. Kandel,et al.  Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. , 1965, The Journal of physiology.

[58]  L. Tauc Presynaptic inhibition in the abdominal ganglion of Aplysia. , 1965, The Journal of physiology.

[59]  G. M. Hughes,et al.  AN ELECTROPHYSIOLOGICAL STUDY OF THE ANATOMICAL RELATIONS OF TWO GIANT NERVE CELLS IN APLYSIA DEPILANS. , 1963, The Journal of experimental biology.

[60]  L. Tauc Identification of Active Membrane Areas in the Giant Neuron of Aplysia , 1962, The Journal of general physiology.

[61]  L. Tauc,et al.  A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system. , 1962, Journal of neurophysiology.

[62]  L. Tauc,et al.  Cholinergic Transmission Mechanisms for both Excitation and Inhibition in Molluscan Central Synapses , 1961, Nature.

[63]  G. A. Kerkut,et al.  The effects of drugs on the neurones of the snail Helix aspersa. , 1961, Comparative biochemistry and physiology.

[64]  L. Tauc,et al.  Processus post-synaptiques d'excitation et d'inhibition dans le soma neuronique de l'aplysie et de l'escargot , 1958 .

[65]  C. Terzuolo,et al.  Diverse forms of activity in the somata of spontaneous and integrating ganglion cells , 1957, The Journal of physiology.

[66]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. II. PATTERN AND INTERACTION IN BURST FORMATION , 1955 .

[67]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. I. CARDIO-INHIBITION AND ACCELERATION IN PANULIRUS ARGUS , 1953 .

[68]  G Hoyle,et al.  Neural mechanism underlying behavior in the locust Schistocerca gregaria. 3. Topography of limb motorneurons in the metathoracic ganglion. , 1973, Journal of neurobiology.

[69]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. I. Functional organization of the central nervous system. , 1973, Journal of neurobiology.

[70]  G. Hoyle,et al.  Neuronal basis of behavior in Tritonia. II. Relationship of muscular contraction to nerve impulse pattern. , 1973, Journal of neurobiology.

[71]  M. Burrows,et al.  Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified motorneurons in the metathoracic ganglion. , 1973, Journal of neurobiology.

[72]  N. Osborne The analysis of amines and amino acids in micro-quantities of tissue , 1973 .

[73]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain. , 1973, Journal of neurobiology.

[74]  G. Hoyle,et al.  The neuronal basis of behavior in Tritonia. 3. Neuronal mechanism of a fixed action pattern. , 1973, Journal of neurobiology.

[75]  C. Lent Retzius' cells from segmental ganglia of four species of leeches: Comparative neuronal geometry , 1973 .

[76]  H. Wachtel,et al.  Conversion of synaptic excitation to inhibition at a dual chemical synapse. , 1971, Journal of neurophysiology.

[77]  B. Glaizner Pharmacological Mapping of Cells in the Suboesophageal Ganglia of Helix Aspersa , 1968 .

[78]  H. Gerschenfeld,et al.  Evidence for an excitatory transmitter role of serotonin in molluscan central synapses. , 1968, Advances in pharmacology.

[79]  Maynard Dm,et al.  Integration in crustacean ganglia. , 1966 .

[80]  A. R. Martin,et al.  Quantal Nature of Synaptic Transmission , 1966 .