Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks

[1]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[2]  Zhong Sun,et al.  An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production , 2013, Scientific Reports.

[3]  Masakazu Higuchi,et al.  High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity in a Chemically Robust Porous Coordination Polymer , 2013 .

[4]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[5]  Valerio D’Elia,et al.  Synthesis of Cyclic Carbonates from Epoxides and CO2 under Mild Conditions Using a Simple, Highly Efficient Niobium‐Based Catalyst , 2013 .

[6]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[7]  Randall Q. Snurr,et al.  Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases , 2013 .

[8]  D. Farrusseng,et al.  The Origin of the Activity of Amine‐Functionalized Metal–Organic Frameworks in the Catalytic Synthesis of Cyclic Carbonates from Epoxide and CO2 , 2012 .

[9]  Li Wang,et al.  Hydrogen Storage in Metal-Organic Frameworks , 2012, Journal of Inorganic and Organometallic Polymers and Materials.

[10]  Amy J. Cairns,et al.  On demand: the singular rht net, an ideal blueprint for the construction of a metal-organic framework (MOF) platform. , 2012, Angewandte Chemie.

[11]  A. Burrell,et al.  Ultrasensitive sorption behavior of isostructural lanthanide–organic frameworks induced by lanthanide contraction , 2012 .

[12]  C. Serre,et al.  CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks. , 2012, Chemical communications.

[13]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[14]  Arne Thomas,et al.  Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. , 2012, ChemSusChem.

[15]  I. Omae Recent developments in carbon dioxide utilization for the production of organic chemicals , 2012 .

[16]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[17]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[18]  A. Burrell,et al.  Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide–organic frameworks , 2012 .

[19]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[20]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[21]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[22]  Mohamed Eddaoudi,et al.  The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. , 2012, Chemical communications.

[23]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[24]  Mohamed Eddaoudi,et al.  The quest for modular nanocages: tbo-MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks. , 2011, Journal of the American Chemical Society.

[25]  M. Eddaoudi,et al.  The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. , 2011, Journal of the American Chemical Society.

[26]  Zhiyong Guo,et al.  A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. , 2011, Angewandte Chemie.

[27]  S. Kaskel,et al.  n-Butane adsorption on Cu3(btc)2 and MIL-101 , 2010 .

[28]  Gérard Férey,et al.  A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(IV) dicarboxylates. , 2010, Chemical communications.

[29]  Mohamed Eddaoudi,et al.  Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). , 2009, Journal of the American Chemical Society.

[30]  B. Han,et al.  MOF-5/n-Bu 4 NBr: An Efficient Catalyst System for the Synthesis of Cyclic Carbonates from Epoxides and CO 2 under Mild Conditions. , 2009 .

[31]  Hong‐Cai Zhou,et al.  Metal-organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90 degrees bend angles. , 2009, Angewandte Chemie.

[32]  C. Serre,et al.  Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). , 2009, Journal of the American Chemical Society.

[33]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[34]  B. Han,et al.  MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions , 2009 .

[35]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[37]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[38]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[39]  Craig M. Brown,et al.  Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies. , 2008, Journal of the American Chemical Society.

[40]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[41]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[42]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[43]  Young Kwan Park,et al.  Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. , 2007, Angewandte Chemie.

[44]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[45]  N. Champness,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[46]  C. Serre,et al.  MIL-103, a 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area. , 2005, Journal of the American Chemical Society.

[47]  Song Gao,et al.  Synthesis and characterization of two novel lanthanide coordination polymers with an open framework based on an unprecedented [Ln(7)(micro(3)-OH)(8)](13+) cluster. , 2004, Inorganic chemistry.

[48]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[49]  Colin Camerer : Past , Present , Future , 2003 .

[50]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.