Tetrolet shrinkage with anisotropic total variation minimization for image approximation

In this paper, an anisotropic total variation (ATV) minimization is combined with the new adaptive tetrolet transform for discontinuity-preserving image processing. In order to suppress the pseudo-Gibbs artefacts and to increase the regularity, the conventional shrinkage results are further processed by a total variation (TV) minimization scheme, in which only the insignificant tetrolet coefficients of the image are changed by the use of ATV constrained projection, instead of previous TV projections. Numerical experiments of piecewise-smooth images show the good performance of the proposed hybrid method to recover the shape of edges and important detailed directional components, in comparison to some existing methods.

[1]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[2]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[3]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[4]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[5]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[6]  Glenn R. Easley,et al.  Shearlet-Based Total Variation Diffusion for Denoising , 2009, IEEE Transactions on Image Processing.

[7]  Tony F. Chan,et al.  Total variation improved wavelet thresholding in image compression , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[8]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[9]  A. Elmoataz,et al.  Nonlocal Anisotropic Discrete Regularization for Image, Data Filtering and Clustering , 2007 .

[10]  Jianwei Ma,et al.  Towards artifact-free characterization of surface topography using complex wavelets and total variation minimization , 2005, Appl. Math. Comput..

[11]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[12]  G. Easley,et al.  Shearlet Based Total Variation for Denoising , 2022 .

[13]  S. Mallat A wavelet tour of signal processing , 1998 .

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  Jens Krommweh,et al.  Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation , 2010, J. Vis. Commun. Image Represent..

[16]  Jianwei Ma,et al.  Combined Complex Ridgelet Shrinkage and Total Variation Minimization , 2006, SIAM J. Sci. Comput..

[17]  Jianwei Ma Characterization of textural surfaces using wave atoms , 2007 .

[18]  J CandèsEmmanuel,et al.  New multiscale transforms, minimum total variation synthesis , 2002 .

[19]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[20]  Felix Friedrich,et al.  Beyond wavelets: New image representation paradigms , 2005 .

[21]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[22]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[23]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[24]  J. Weickert,et al.  Energy-Based Image Simplification with Nonlocal Data and Smoothness Terms , 2007 .

[25]  Jianwei Ma,et al.  Curvelets for surface characterization , 2007 .

[26]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[27]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[28]  Tony F. Chan,et al.  The digital TV filter and nonlinear denoising , 2001, IEEE Trans. Image Process..

[29]  Gerlind Plonka-Hoch,et al.  Combined Curvelet Shrinkage and Nonlinear Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[30]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[31]  Ronald R. Coifman,et al.  Combining the Calculus of Variations and Wavelets for Image Enhancement , 2000 .

[32]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[33]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[34]  Didier Sornette,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[35]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[36]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[37]  Mohamed-Jalal Fadili,et al.  Curvelets and Ridgelets , 2009, Encyclopedia of Complexity and Systems Science.

[38]  Gerlind Plonka-Hoch,et al.  Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures , 2008, IEEE Transactions on Image Processing.