Spectral analysis for matrix Hamiltonian operators

In this work, we study the spectral properties of matrix Hamiltonians generated by linearizing the nonlinear Schrodinger equation about soliton solutions. By a numerically assisted proof, we show that there are no embedded eigenvalues for the three dimensional cubic equation. Although we focus on a proof of the 3D cubic problem, this work presents a new algorithm for verifying certain spectral properties needed to study soliton stability.Source code for verification of our computations, and for further experimentation, is available at http://hdl.handle.net/1807/25174.

[1]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[2]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[3]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[4]  N. Levinson The asymptotic nature of solutions of linear systems of differential equations , 1948 .

[5]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[6]  Kevin McLeod,et al.  Uniqueness of Positive Radial Solutions of Δu + f(u) = 0 in ℝ n , II , 1993 .

[7]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[8]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[9]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[10]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[11]  Lawrence F. Shampine,et al.  A User-Friendly Fortran BVP Solver , 2006 .

[12]  A. Strohmaier Microlocal Analysis , 2005 .

[13]  M. S. P. Eastham,et al.  The asymptotic solution of linear differential systems : applications of the Levinson theorem , 1989 .

[14]  Gideon Simpson,et al.  Asymptotic Stability of Ascending Solitary Magma Waves , 2008, SIAM J. Math. Anal..

[15]  Lawrence F. Shampine,et al.  Solving ODEs with MATLAB , 2002 .

[16]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[17]  Dmitry E. Pelinovsky,et al.  Spectra of positive and negative energies in the linearized NLS problem , 2005 .

[18]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[19]  CHIN-YUAN LIN,et al.  ftp ejde.math.txstate.edu (login: ftp) NONLINEAR EVOLUTION EQUATIONS , 2022 .

[20]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[21]  Elias M. Stein,et al.  Harmonic Analysis (PMS-43), Volume 43: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43) , 1993 .

[22]  Dmitry E. Pelinovsky,et al.  Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem , 2005 .

[23]  Michael E. Taylor,et al.  Partial Differential Equations II , 1996 .

[24]  G. Simpson,et al.  Vortex Collapse for the L2-Critical Nonlinear Schr\ , 2010, 1010.5864.

[25]  N. Visciglia,et al.  On asymptotic stability of ground states of NLS with a finite bands periodic potential in 1D , 2003, 0809.4775.

[26]  J. Shatah Stable standing waves of nonlinear Klein-Gordon equations , 1983 .

[27]  Pierre Raphaël,et al.  The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation , 2005 .

[28]  Lawrence F. Shampine,et al.  Singular boundary value problems for ODEs , 2003, Appl. Math. Comput..

[29]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[30]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[31]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[32]  Barry Simon,et al.  Analysis of Operators , 1978 .

[33]  Shu-Ming Chang,et al.  Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..

[34]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .

[35]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[36]  Wilhelm Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I , 2004 .

[37]  Wilhelm Schlag Stable manifolds for an orbitally unstable NLS , 2004 .

[38]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[39]  J. Marzuola Dispersive estimates using scattering theory for matrix Hamiltonian equations , 2009, 0906.0351.

[40]  Jalal Shatah,et al.  Unstable ground state of nonlinear Klein-Gordon equations , 1985 .

[41]  Scipio Cuccagna ON ASYMPTOTIC STABILITY OF GROUND STATES OF NLS , 2003 .

[42]  G. Perelman Asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[43]  G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .

[44]  Gadi Fibich,et al.  Proof of a Spectral Property related to the singularity formation for the L2 critical nonlinear Schrödinger equation , 2006 .

[45]  Wilhelm Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II , 2006 .

[46]  Wilhelm Schlag,et al.  Stable manifolds for an orbitally unstable nonlinear Schrödinger equation , 2009 .