Planar laser-driven ablation: Effect of inhibited electron thermal conduction

A model for planar laser‐driven ablation is presented, including the effects of inhibited electron thermal conduction. Localized deposition of laser energy at the critical‐density surface is assumed. A steady‐state solution in the conduction zone is joined to a rarefaction wave in the underdense corona. The global flow structure is calculated, as well as the ablation pressure, ablation rate, and hydrodynamic efficiency. Criteria are developed for the importance of the inertial force caused by the acceleration of the slab. The results agree well with time‐dependent computer simulations using a Lagrangian hydrodynamics code.

[1]  J. A. Stamper,et al.  Faraday rotation measurements of megagauss magnetic fields in laser-produced plasmas. Final report , 1975 .

[2]  J. Gardner,et al.  Wavelength scaling for reactor-size laser fusion targets. Memorandum report , 1981 .

[3]  C. McKee,et al.  Effects of flow on density profiles in laser irradiated plasmas , 1977 .

[4]  M. J. Boyle,et al.  The interaction of 1.06 μm laser radiation with high Z disk targets , 1979 .

[5]  K. Nishihara,et al.  Deflagration Waves in Laser Compression. I , 1978 .

[6]  L. Spitzer Physics of fully ionized gases , 1956 .

[7]  E. Goldman Numerical modeling of laser produced plasmas: the dynamics and neutron production in dense spherically symmetric plasmas , 1973 .

[8]  Characteristics of lateral and axial transport in laser irradiations of layered‐disk targets at 1.06 and 0.35 μm wavelengths , 1984 .

[9]  R. Fabbro,et al.  Experimental transport studies in laser-produced plasmas at 1. 06 and 0. 53. mu. m , 1979 .

[10]  Jacques Denavit,et al.  Collisionless plasma expansion into a vacuum , 1979 .

[11]  J. Stamper,et al.  Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation. Interim report , 1978 .

[12]  A. Ng,et al.  Ion turbulence in a CO/sub 2/-laser-plasma interaction experiment , 1978 .

[13]  D. Forslund,et al.  Theoretical derivation of laser induced plasma profiles , 1977 .

[14]  J. Stamper,et al.  Observation of magnetic fields in laser-produced plasma using the Zeeman effect. Memorandum report , 1983 .

[15]  W. Kruer,et al.  Two‐dimensional relativistic simulations of resonance absorption , 1975 .

[16]  G. Pert Deflagrations and discontinuities in laser-produced plasmas , 1983, Journal of Plasma Physics.

[17]  Heinrich Hora,et al.  Laser Interaction and Related Plasma Phenomena , 2005 .

[18]  J. Allen,et al.  The expansion of a plasma into a vacuum , 1975, Journal of Plasma Physics.

[19]  J. D. Kilkenny,et al.  Observation of severe heat-flux limitation and ion-acoustic turbulence in a laser-heated plasma , 1977 .

[20]  B. MacGowan,et al.  Evidence for large heat fluxes from the mass ablation rate of laser‐irradiated spherical targets , 1982 .

[21]  J. L. Bobin,et al.  FLAME PROPAGATION AND OVERDENSE HEATING IN A LASER CREATED PLASMA. , 1971 .

[22]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[23]  O. Willi,et al.  Megagauss magnetic field profiles in laser-produced plasmas , 1978 .

[24]  F. Felber Steady-state model of a flat laser-driven target , 1977 .

[25]  G. L. Stradling,et al.  Laser-Plasma Interactions at 0.53 μm for Disk Targets of VaryingZ , 1981 .

[26]  Hiroshi Azechi,et al.  Experimental study of wavelength dependences of laser-plasma coupling, transport, and ablation processes , 1981 .

[27]  C. McKee,et al.  The evaporation of spherical clouds in a hot gas. III - Suprathermal evaporation , 1982 .

[28]  R. Berger,et al.  Effect of flux‐limited thermal conduction on the jump conditions of the laser‐plasma critical surface , 1980 .

[29]  W. Mead,et al.  A model for laser driven ablative implosions , 1980 .

[30]  Robert L. McCrory,et al.  Self-consistent reduction of the Spitzer-Härm electron thermal heat flux in steep temperature gradients in laser-produced plasmas , 1981 .

[31]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[32]  J. Virmont,et al.  A dual treatment of suprathermal electron transport in laser fusion studies , 1979 .

[33]  J. Allen,et al.  A note on ion rarefaction waves , 1970, Journal of Plasma Physics.

[34]  Ablative acceleration of laser-irradiated thin-foil targets , 1979 .

[35]  J. Virmont,et al.  Density profile modification by light pressure in spherical geometry , 1978 .

[36]  W. Mead,et al.  Effect of symmetry requirements on the wavelength scaling of directly driven laser fusion implosions , 1983 .

[37]  D. Forslund,et al.  Theory of hot-electron spectra at high laser intensity , 1977 .

[38]  L. Spitzer,et al.  Diffuse matter in space , 1968 .

[39]  Kent Estabrook,et al.  Properties of Resonantly Heated Electron Distributions , 1978 .

[40]  P. Mora Theoretical model of absorption of laser light by a plasma , 1982 .

[41]  W. Manheimer,et al.  Steady‐state planar ablative flow , 1981 .

[42]  P. Mora,et al.  Self‐similar expansion of a plasma into a vacuum , 1979 .

[43]  Steady‐state solutions for laser plasmas in planar geometry , 1979 .

[44]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[45]  J. Stamper,et al.  Dependence of spontaneous magnetic fields in laser produced plasmas on target size and structure , 1979 .

[46]  S. Ramsden,et al.  A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air , 1964, Nature.

[47]  G. L. Stradling,et al.  Laser irradiation of disk targets at 0.53 μm wavelength , 1983 .

[48]  W. Mead,et al.  Scaling of ablative laser-fusion implosions , 1980 .

[49]  B. Ripin,et al.  Characteristics of ablation plasma from planar, laser‐driven targets , 1981 .

[50]  Stephen E. Bodner,et al.  Critical elements of high gain laser fusion , 1981 .

[51]  L. Cowie,et al.  The evaporation of spherical clouds in a hot gas. I - Classical and saturated mass loss rates , 1977 .

[52]  B. Ahlborn,et al.  Heat flux induced wave fronts , 1981 .

[53]  J. Kilkenny,et al.  The measurement of ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma , 1980 .

[54]  B. Ahlborn,et al.  STEADY RADIATION FRONTS BEHIND WINDOWS. , 1969 .

[55]  R. G. Evans,et al.  Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .

[56]  Barrett H. Ripin,et al.  Laser‐plasma interaction and ablative acceleration of thin foils at 1012–1015 W/cm2 , 1980 .

[57]  Martin Richardson,et al.  Thermal Transport Measurements in 1.05 µm Laser Irradiation of Spherical Targets , 1984 .

[58]  S. J. Gitomer,et al.  Preheat Studies for Foils Accelerated by Ablation due to Laser Irradiation , 1980 .