Shock effects on delta wing vortex breakdown

It has been observed that delta wings placed in a transonic freestream can experience a sudden movement of the vortex breakdown location as the angle of incidence is increased. The current paper uses computational fluid dynamics to examine this behavior in detail. The study shows that a shock/vortex interaction is responsible. The balance of the vortex strength and axial flow and the shock strength are examined to provide an explanation of the sensitivity of the breakdown location. Limited experimental data are available to supplement the computational fluid dynamics results in certain key respects, and the ideal synergy between computational fluid dynamics and experiments for this problem is considered.

[1]  Russell M. Cummings,et al.  What Was Learned From the Numerical Simulations for the VFE-2 , 2008 .

[2]  O. J. Boelens,et al.  Analysis of Transonic Flow on a Slender Delta Wing Using CFD , 2006 .

[3]  Charles E. Jobe Vortex Breakdown Location over 65° Delta Wings Empiricism and Experiment , 2004 .

[4]  Dietrich Hummel Effects of Boundary Layer Formation on the Vortical Flow above Slender Delta Wings , 2004 .

[5]  E. Krause,et al.  Normal Shock Vortex Interaction , 2003 .

[6]  G. Redeker,et al.  A new vortex flow experiment for computer code validation , 2001 .

[7]  B. Richards,et al.  Elements of computational fluid dynamics on block structured grids using implicit solvers , 2000 .

[8]  Johan C. Kok,et al.  Resolving the Dependence on Freestream Values for the k- Turbulence Model , 2000 .

[9]  Michael K. Smart,et al.  Aspects of shock wave-induced vortex breakdown , 2000 .

[10]  Charles Jobe Vortex breakdown location over 65-deg delta wings - Empiricism and experiment , 1998 .

[11]  W. J. Bannink,et al.  Surface Reflective Visualizations of Shock-Wave/Vortex Interactions Above a Delta Wing , 1997 .

[12]  James M. Luckring,et al.  Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)] , 1996 .

[13]  C. Julio,et al.  Experimental Surface Pressure Data Obtained on 65-Degree Delta Wing Across Reynolds Number and Mach Number Ranges, Volume 4-Large-Radius Leading Edge , 1996 .

[14]  J. M. A. Longo Compressible Inviscid Vortex Flow of a Sharp Edge Delta Wing , 1995 .

[15]  J. Délery Aspects of vortex breakdown , 1994 .

[16]  B. A. Robinson,et al.  Simple Numerical Criterion for Vortex Breakdown , 1994 .

[17]  J. H. B. Smith,et al.  Vortex flow aerodynamics , 1992 .

[18]  W. J. Bannink,et al.  The international vortex flow experiment , 1988 .

[19]  Thomas B. Gatski,et al.  A criterion for vortex breakdown , 1987 .

[20]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .