Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity

In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconducting cavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated using an in situ microwave calibration source, a shot noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.

[1]  J. Ignacio Cirac,et al.  Separability Properties of Three-mode Gaussian States , 2001 .

[2]  T Yamamoto,et al.  Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.

[3]  V. Shumeiko,et al.  Non-degenerate parametric resonance in tunable superconducting cavity , 2017, 1704.05083.

[4]  Hidehiro Yonezawa,et al.  Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.

[5]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[7]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[8]  On the robustness of entanglement in analogue gravity systems , 2013, 1305.3867.

[9]  C. Sabín,et al.  A classification of entanglement in three-qubit systems , 2007, 0707.1780.

[10]  Entanglement, coherence, and redistribution of quantum resources in double spontaneous down-conversion processes , 2016, 1607.05043.

[11]  Waltraut Wustmann,et al.  Parametric resonance in tunable superconducting cavities , 2013, 1302.3484.

[12]  David Edward Bruschi,et al.  Relativistic motion generates quantum gates and entanglement resonances. , 2012, Physical review letters.

[13]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[14]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[15]  E Solano,et al.  Dynamical Casimir effect entangles artificial atoms. , 2014, Physical review letters.

[16]  Juha Hassel,et al.  Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity , 2015, Nature Communications.

[17]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[18]  David Edward Bruschi,et al.  Motion generates entanglement , 2012, 1201.0549.

[19]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[20]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[21]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[22]  Christoph Simon,et al.  Three-photon energy–time entanglement , 2012, Nature Physics.

[23]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[24]  B. Sanders,et al.  How to share a continuous-variable quantum secret by optical interferometry , 2001, quant-ph/0107074.

[25]  T. Duty,et al.  Photon generation in an electromagnetic cavity with a time-dependent boundary. , 2010, Physical review letters.

[26]  R. Teh,et al.  Criteria for genuine N-partite continuous-variable entanglement and Einstein-Podolsky-Rosen steering , 2013, 1310.2690.

[27]  Daniele Faccio,et al.  Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities , 2013 .

[28]  Temple,et al.  PP , 2018, Catalysis from A to Z.

[29]  Yoshichika Miwa,et al.  Parallel generation of quadripartite cluster entanglement in the optical frequency comb. , 2011, Physical review letters.

[30]  R. Schoelkopf,et al.  Shot noise thermometry down to 10mK , 2006 .

[31]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[32]  Göran Johansson,et al.  Towards universal quantum computation through relativistic motion , 2013, Scientific Reports.

[33]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[34]  C. Fabre,et al.  Is"genuine multipartite entanglement"really genuine? , 2016, 1603.05802.

[35]  Nicolai Friis,et al.  Entanglement generation in relativistic quantum fields , 2012, 1204.0617.

[36]  Franco Nori,et al.  Dynamical Casimir effect in a superconducting coplanar waveguide. , 2009, Physical review letters.

[37]  C. Sabín,et al.  Dynamical Casimir Effect for Gaussian Boson Sampling , 2016, Scientific Reports.

[38]  T. M. Stace,et al.  Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.

[39]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[40]  E Solano,et al.  Finite-time quantum entanglement in propagating squeezed microwaves , 2017, Scientific Reports.

[41]  Leila R. Vale,et al.  Quantum superposition of a single microwave photon in two different ’colour’ states , 2011, 1106.2523.

[42]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[43]  C. Wilson,et al.  Characterization of a multimode coplanar waveguide parametric amplifier , 2014, 1409.8160.

[44]  L. Ranzani,et al.  Coherent-state storage and retrieval between superconducting cavities using parametric frequency conversion , 2015, 1503.02571.

[45]  B. Huard,et al.  Superconducting quantum node for entanglement and storage of microwave radiation. , 2014, Physical review letters.

[46]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[47]  R. Schoelkopf,et al.  Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction , 2003, Science.

[48]  P. Loock,et al.  Generalized conditions for genuine multipartite continuous-variable entanglement , 2015, 1503.05001.