Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity
暂无分享,去创建一个
I. Fuentes | A. M. Vadiraj | I. Fuentes | C. Wilson | G. Johansson | A. Vadiraj | J. Aumentado | C. M. Wilson | G. Johansson | C. W. Sandbo Chang | Carlos Sab'in | P. Forn-D'iaz | Fernando Quijandr'ia | C. Sab'in | Jos'e Aumentado | M. Simoen | P. Forn-D'iaz | M. Simoen | Fernando Quijandr'ia | C. Wilson | C. W. S. Chang
[1] J. Ignacio Cirac,et al. Separability Properties of Three-mode Gaussian States , 2001 .
[2] T Yamamoto,et al. Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.
[3] V. Shumeiko,et al. Non-degenerate parametric resonance in tunable superconducting cavity , 2017, 1704.05083.
[4] Hidehiro Yonezawa,et al. Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.
[5] Dutta,et al. Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[6] Simón. Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.
[7] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[8] On the robustness of entanglement in analogue gravity systems , 2013, 1305.3867.
[9] C. Sabín,et al. A classification of entanglement in three-qubit systems , 2007, 0707.1780.
[10] Entanglement, coherence, and redistribution of quantum resources in double spontaneous down-conversion processes , 2016, 1607.05043.
[11] Waltraut Wustmann,et al. Parametric resonance in tunable superconducting cavities , 2013, 1302.3484.
[12] David Edward Bruschi,et al. Relativistic motion generates quantum gates and entanglement resonances. , 2012, Physical review letters.
[13] F. Illuminati,et al. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.
[14] A. Pourkabirian,et al. Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.
[15] E Solano,et al. Dynamical Casimir effect entangles artificial atoms. , 2014, Physical review letters.
[16] Juha Hassel,et al. Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity , 2015, Nature Communications.
[17] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[18] David Edward Bruschi,et al. Motion generates entanglement , 2012, 1201.0549.
[19] Akira Furusawa,et al. Detecting genuine multipartite continuous-variable entanglement , 2003 .
[20] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[21] Weinfurter,et al. Quantum cryptography with entangled photons , 1999, Physical review letters.
[22] Christoph Simon,et al. Three-photon energy–time entanglement , 2012, Nature Physics.
[23] A. Furusawa,et al. Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.
[24] B. Sanders,et al. How to share a continuous-variable quantum secret by optical interferometry , 2001, quant-ph/0107074.
[25] T. Duty,et al. Photon generation in an electromagnetic cavity with a time-dependent boundary. , 2010, Physical review letters.
[26] R. Teh,et al. Criteria for genuine N-partite continuous-variable entanglement and Einstein-Podolsky-Rosen steering , 2013, 1310.2690.
[27] Daniele Faccio,et al. Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities , 2013 .
[28] Temple,et al. PP , 2018, Catalysis from A to Z.
[29] Yoshichika Miwa,et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. , 2011, Physical review letters.
[30] R. Schoelkopf,et al. Shot noise thermometry down to 10mK , 2006 .
[31] Yasunobu Nakamura,et al. Flux-driven Josephson parametric amplifier , 2008, 0808.1386.
[32] Göran Johansson,et al. Towards universal quantum computation through relativistic motion , 2013, Scientific Reports.
[33] W. Bowen,et al. Tripartite quantum state sharing. , 2003, Physical review letters.
[34] C. Fabre,et al. Is"genuine multipartite entanglement"really genuine? , 2016, 1603.05802.
[35] Nicolai Friis,et al. Entanglement generation in relativistic quantum fields , 2012, 1204.0617.
[36] Franco Nori,et al. Dynamical Casimir effect in a superconducting coplanar waveguide. , 2009, Physical review letters.
[37] C. Sabín,et al. Dynamical Casimir Effect for Gaussian Boson Sampling , 2016, Scientific Reports.
[38] T. M. Stace,et al. Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.
[39] Eleni Diamanti,et al. Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.
[40] E Solano,et al. Finite-time quantum entanglement in propagating squeezed microwaves , 2017, Scientific Reports.
[41] Leila R. Vale,et al. Quantum superposition of a single microwave photon in two different ’colour’ states , 2011, 1106.2523.
[42] H. J. Kimble,et al. The quantum internet , 2008, Nature.
[43] C. Wilson,et al. Characterization of a multimode coplanar waveguide parametric amplifier , 2014, 1409.8160.
[44] L. Ranzani,et al. Coherent-state storage and retrieval between superconducting cavities using parametric frequency conversion , 2015, 1503.02571.
[45] B. Huard,et al. Superconducting quantum node for entanglement and storage of microwave radiation. , 2014, Physical review letters.
[46] M. Devoret,et al. Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.
[47] R. Schoelkopf,et al. Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction , 2003, Science.
[48] P. Loock,et al. Generalized conditions for genuine multipartite continuous-variable entanglement , 2015, 1503.05001.