Kernel intuitionistic fuzzy c-means and state transition algorithm for clustering problem

[1]  Xiaojun Zhou,et al.  Set-Point Tracking and Multi-Objective Optimization-Based PID Control for the Goethite Process , 2018, IEEE Access.

[2]  Sanjay Kumar Dubey,et al.  Comparative Analysis of K-Means and Fuzzy C- Means Algorithms , 2013 .

[3]  R. J. Kuo,et al.  A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis , 2018, Appl. Soft Comput..

[4]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[5]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[6]  Xiaojun Zhou,et al.  A Hybrid Feature Selection Method Based on Binary State Transition Algorithm and ReliefF , 2019, IEEE Journal of Biomedical and Health Informatics.

[7]  Xiaojun Zhou,et al.  State Transition Algorithm , 2012, ArXiv.

[8]  James C. Bezdek,et al.  Optimization of clustering criteria by reformulation , 1995, IEEE Trans. Fuzzy Syst..

[9]  Yalin Baştanlar,et al.  Introduction to machine learning. , 2014, Methods in molecular biology.

[10]  Xiaojun Zhou,et al.  Discrete state transition algorithm for unconstrained integer optimization problems , 2012, Neurocomputing.

[11]  Guy Fouché,et al.  Introduction to Data Mining , 2011 .

[12]  Dao-Qiang Zhang,et al.  Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm , 2003, Neural Processing Letters.

[13]  Xiaojun Zhou,et al.  A Novel Cognitively Inspired State Transition Algorithm for Solving the Linear Bi-Level Programming Problem , 2018, Cognitive Computation.

[14]  Dao-Qiang Zhang,et al.  A novel kernelized fuzzy C-means algorithm with application in medical image segmentation , 2004, Artif. Intell. Medicine.

[15]  Mohammad Hossein Fazel Zarandi,et al.  Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof , 2017, Neurocomputing.

[16]  Jun Wang,et al.  Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation , 2009, Pattern Recognit..

[17]  Xiaojun Zhou,et al.  Dynamic Optimization for Copper Removal Process With Continuous Production Constraints , 2020, IEEE Transactions on Industrial Informatics.

[18]  Xiaojun Zhou,et al.  Dynamic optimization based on state transition algorithm for copper removal process , 2017, Neural Computing and Applications.

[19]  Cong Shi,et al.  A high speed 1000 fps CMOS image sensor with low noise global shutter pixels , 2013, Science China Information Sciences.

[20]  M. Narasimha Murty,et al.  A near-optimal initial seed value selection in K-means means algorithm using a genetic algorithm , 1993, Pattern Recognit. Lett..

[21]  Pedro Larrañaga,et al.  An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..

[22]  Xiaojun Zhou,et al.  A dynamic state transition algorithm with application to sensor network localization , 2015, Neurocomputing.

[23]  Rui Zhang,et al.  Special Issue Editorial: Cognitively-Inspired Computing for Knowledge Discovery , 2018, Cognitive Computation.

[24]  Amir Hussain,et al.  Cognitive Computation: An Introduction , 2009, Cognitive Computation.

[25]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[26]  Susan W. Kieffer,et al.  In situ observations of Old Faithful Geyser , 1997 .

[27]  Kuo-Ping Lin,et al.  A Novel Evolutionary Kernel Intuitionistic Fuzzy $C$ -means Clustering Algorithm , 2014, IEEE Transactions on Fuzzy Systems.

[28]  Michael A. Sipe,et al.  Statistical Pattern Recognition , 2001, Pattern Analysis and Applications.

[29]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010, Int. J. Intell. Syst..

[30]  Adriano Lorena Inácio de Oliveira,et al.  Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization , 2015, Expert Syst. Appl..

[31]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[32]  Xiaojun Zhou,et al.  A Two-stage State Transition Algorithm for Constrained Engineering Optimization Problems , 2018 .

[33]  Xiaojun Zhou,et al.  An External Archive-Based Constrained State Transition Algorithm for Optimal Power Dispatch , 2019, Complex..

[34]  Shanlin Yang,et al.  Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation , 2014, Science China Information Sciences.

[35]  Witold Pedrycz,et al.  Collaborative clustering with the use of Fuzzy C-Means and its quantification , 2008, Fuzzy Sets Syst..

[36]  Jian Xiao,et al.  A novel chaotic particle swarm optimization based fuzzy clustering algorithm , 2012, Neurocomputing.

[37]  Raj Mittra,et al.  Optimal multilayer filter design using real coded genetic algorithms , 1992 .

[38]  Rui Yao,et al.  A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm , 2017, Soft Computing.

[39]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[40]  Dimitrios K. Iakovidis,et al.  Intuitionistic Fuzzy Cognitive Maps , 2013, IEEE Transactions on Fuzzy Systems.

[41]  Jingwei Liu,et al.  Kernelized fuzzy attribute C-means clustering algorithm , 2008, Fuzzy Sets Syst..

[42]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[43]  Xiaojun Zhou,et al.  A Statistical Study on Parameter Selection of Operators in Continuous State Transition Algorithm , 2018, IEEE Transactions on Cybernetics.

[44]  Ferani E. Zulvia,et al.  An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation , 2016, Neurocomputing.

[45]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Tamalika Chaira,et al.  A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images , 2011, Appl. Soft Comput..

[47]  Xiaojun Zhou,et al.  A novel modularity-based discrete state transition algorithm for community detection in networks , 2019, Neurocomputing.

[48]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[49]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[50]  Mohamed Elhoseny,et al.  Extended Genetic Algorithm for solving open-shop scheduling problem , 2019, Soft Comput..