An evaluation of global-model hierarchical classification algorithms for hierarchical classification problems with single path of labels

Several classification tasks in different application domains can be seen as hierarchical classification problems. In order to deal with hierarchical classification problems, the use of existing flat classification approaches is not appropriate. For these reason, there has been a growing number of studies focusing on the development of novel algorithms able to induce classification models for hierarchical classification problems. In this paper we study the performance of a novel algorithm called Hierarchical Classification using a Competitive Neural Network (HC-CNN) and compare its performance against the Global-Model Naive Bayes (GMNB) on eight protein function prediction datasets. Interestingly enough, the comparison of two global-model hierarchical classification algorithms for single path of labels hierarchical classification problems has never been done before.

[1]  Robert E. Schapire,et al.  Hierarchical multi-label prediction of gene function , 2006, Bioinform..

[2]  Ian Witten,et al.  Data Mining , 2000 .

[3]  Ee-Peng Lim,et al.  Hierarchical text classification and evaluation , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[4]  Geoffrey I. Webb,et al.  Discretization for naive-Bayes learning: managing discretization bias and variance , 2008, Machine Learning.

[5]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[6]  Stan Matwin,et al.  Learning and Evaluation in the Presence of Class Hierarchies: Application to Text Categorization , 2006, Canadian AI.

[7]  Michael I. Jordan,et al.  A critical assessment of Mus musculus gene function prediction using integrated genomic evidence , 2008, Genome Biology.

[8]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[9]  Giorgio Valentini,et al.  True Path Rule Hierarchical Ensembles , 2009, MCS.

[10]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[11]  O. Troyanskaya,et al.  Predicting gene function in a hierarchical context with an ensemble of classifiers , 2008, Genome Biology.

[12]  Alexander Lerch,et al.  A HIERARCHICAL APPROACH TO AUTOMATIC MUSICAL GENRE CLASSIFICATION , 2003 .

[13]  Maurice Bruynooghe,et al.  Hierarchical multi-classification , 2002, KDD 2002.

[14]  Qiang Yang,et al.  Deep classification in large-scale text hierarchies , 2008, SIGIR '08.

[15]  J. Jośe A HIERARCHICAL APPROACH TO AUTOMATIC MUSICAL GENRE CLASSIFICATION , 2003 .

[16]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[17]  Alex Alves Freitas,et al.  A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[18]  Alex Alves Freitas,et al.  A Global-Model Naive Bayes Approach to the Hierarchical Prediction of Protein Functions , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[19]  Alex Alves Freitas,et al.  A hierarchical multi-label classification ant colony algorithm for protein function prediction , 2010, Memetic Comput..

[20]  Saso Dzeroski,et al.  Decision trees for hierarchical multi-label classification , 2008, Machine Learning.

[21]  Alex A. Freitas,et al.  A Tutorial on Hierarchical Classification with Applications in Bioinformatics. , 2007 .

[22]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[23]  Júlio C. Nievola,et al.  Hierarchical classification using a Competitive Neural Network , 2012, 2012 8th International Conference on Natural Computation.

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Alex Alves Freitas,et al.  Multi-label Hierarchical Classification of Protein Functions with Artificial Immune Systems , 2008, BSB.

[26]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[27]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[28]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..