Minimum energy desynchronizing control for coupled neurons

We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson’s disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron’s next spike, leading to desynchronization for the network.

[1]  Peter A. Tass,et al.  Control of Neuronal Synchrony by Nonlinear Delayed Feedback , 2006, Biological Cybernetics.

[2]  Jeff Moehlis,et al.  Controlling spike timing and synchrony in oscillatory neurons. , 2011, Journal of neurophysiology.

[3]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[4]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[5]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[6]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[7]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[8]  Xiao-Jiang Feng,et al.  Optimal deep brain stimulation of the subthalamic nucleus—a computational study , 2007, Journal of Computational Neuroscience.

[9]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[10]  Eric T. Shea-Brown,et al.  Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model , 2007, Journal of neural engineering.

[11]  Steven J Schiff,et al.  Kalman filter control of a model of spatiotemporal cortical dynamics , 2008, BMC Neuroscience.

[12]  Jeff Moehlis,et al.  A continuation method for computing global isochrons , 2009 .

[13]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[14]  J. Moehlis,et al.  Time optimal control of spiking neurons , 2011, Journal of Mathematical Biology.

[15]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[16]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[17]  A. Winfree The geometry of biological time , 1991 .

[18]  Eric T. Shea-Brown,et al.  Optimal Inputs for Phase Models of Spiking Neurons , 2006 .

[19]  Ali Nabi,et al.  Charge-Balanced Optimal Inputs for Phase Models of Spiking Neurons , 2009 .

[20]  Jeff Moehlis,et al.  Canards for a reduction of the Hodgkin-Huxley equations , 2006, Journal of mathematical biology.

[21]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[22]  Philipp Hövel,et al.  Time-delayed feedback in neurosystems , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[24]  Jeff Moehlis,et al.  Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..

[25]  R. Llinás,et al.  Central motor loop oscillations in parkinsonian resting tremor revealed magnetoencephalography , 1996, Neurology.

[26]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[27]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[28]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[29]  Jr-Shin Li,et al.  Optimal design of minimum-power stimuli for phase models of neuron oscillators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[31]  Honeycutt,et al.  Stochastic Runge-Kutta algorithms. I. White noise. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[33]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[34]  Ian M. Mitchell,et al.  A Toolbox of Level Set Methods , 2005 .

[35]  D. Paré,et al.  Neuronal basis of the parkinsonian resting tremor: A hypothesis and its implications for treatment , 1990, Neuroscience.

[36]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[37]  Michael R. Caputo Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications , 2005 .

[38]  H. Bergman,et al.  Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. , 1995, Journal of neurophysiology.

[39]  P. McClintock Phase resetting in medicine and biology , 2008 .

[40]  Ali Nabi,et al.  CHARGE-BALANCED SPIKE TIMING CONTROL FOR PHASE MODELS OF SPIKING NEURONS , 2010 .

[41]  Ali Nabi,et al.  Minimum energy spike randomization for neurons , 2012, 2012 American Control Conference (ACC).

[42]  Steven J. Schiff,et al.  Towards model-based control of Parkinson's disease , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Ali Nabi,et al.  Nonlinear hybrid control of phase models for coupled oscillators , 2010, Proceedings of the 2010 American Control Conference.

[44]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[45]  Naomi Ehrich Leonard,et al.  Proceedings Of The 2000 American Control Conference , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[46]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[47]  James P. Keener,et al.  Mathematical physiology , 1998 .

[48]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[49]  Charles J. Wilson,et al.  Chaotic Desynchronization as the Therapeutic Mechanism of Deep Brain Stimulation , 2011, Front. Syst. Neurosci..

[50]  Ali Nabi,et al.  Single input optimal control for globally coupled neuron networks , 2011, Journal of neural engineering.

[51]  João Pedro Hespanha,et al.  Event-based minimum-time control of oscillatory neuron models , 2009, Biological Cybernetics.