Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis

Abstract This work describes the compositional characterisation of coccciopesto and natural pozzolanic mortars sampled in the Regio VI area of the archaeological site of Pompeii, with particular reference to the Casa di Pansa in Insula 6 and Casa 17 in Insula 2 . Samples were studied by optical microscopy and analysed by XRF, SEM-EDS, LA-ICP-MS and XRPD. The XRF and SEM-EDS data, subjected to multivariate analysis (cluster analysis), identified the three main construction phases involved in building the Casa di Pansa. In addition, mineralogical and petrographic characteristics of the aggregate were determined and found to be compatible with pyroclastic deposits from the volcano Vesuvius. Study revealed C–S–H phases in the binder, due to pozzolanic hydration phemomena of hydrated lime with cocciopesto and natural pozzalana.

[1]  M. Rosi,et al.  The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data , 1993 .

[2]  Antonia Moropoulou,et al.  Correlation of physicochemical and mechanical properties of historical mortars and classification by multivariate statistics , 2003 .

[3]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[4]  M. Castriota,et al.  Micro-Raman characterizations of Pompei'smortars , 2008 .

[5]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[6]  A. A. Benedetti,et al.  Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria , 1993 .

[7]  F. G. Meyer,et al.  The natural history of Pompeii , 2002 .

[8]  A. Bertagnini,et al.  Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy) , 1999 .

[9]  L. Lirer,et al.  The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption , 1993 .

[10]  Paulo J.M. Monteiro,et al.  Comparative investigation of mortars from Roman Colosseum and cistern , 2005 .

[11]  M. Riccardi,et al.  Microtextural and microchemical studies of hydraulic ancient mortars: Two analytical approaches to understand pre-industrial technology processes , 2007 .

[12]  S. Caro,et al.  An investigation of Roman mortar technology through the petrographic analysis of archaeological material , 2008 .

[13]  M. L. La Russa,et al.  Technological study of “ghiara” mortars from the historical city centre of Catania (Eastern Sicily, Italy) and petro-chemical characterisation of raw materials , 2010 .

[14]  John Peter Oleson,et al.  Reproducing a Roman maritime structure with Vitruvian pozzolanic concrete , 2006, Journal of Roman Archaeology.

[15]  Antonia Moropoulou,et al.  Investigation of the technology of historic mortars , 2000 .

[16]  I. Villa Geochronology of metamorphic rocks , 2004 .

[17]  J. Aitchison Principal component analysis of compositional data , 1983 .

[18]  D. Günther,et al.  Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier , 1999 .

[19]  G. Biscontin,et al.  Interaction between clay and lime in "cocciopesto" mortars: a study by 29Si MAS spectroscopy , 2004 .

[20]  M. D. Robador,et al.  Roman ceramics of hydraulic mortars used to build the Mithraeum house of Mérida (Spain) , 2008 .

[21]  H. Goldsworthy,et al.  MORTAR STUDIES TOWARDS THE REPLICATION OF ROMAN CONCRETE , 2008 .

[22]  D. Miriello,et al.  Image analysis and flatbed scanners. A visual procedure in order to study the macro-porosity of the archaeological and historical mortars , 2006 .

[23]  P. Hewlett,et al.  Lea's chemistry of cement and concrete , 2001 .

[24]  Marie D. Jackson,et al.  Assessment of material characteristics of ancient concretes, Grande Aula, Markets of Trajan, Rome , 2009 .

[25]  John Peter Oleson,et al.  A COMPARISON OF THE CHEMICAL AND ENGINEERING CHARACTERISTICS OF ANCIENT ROMAN HYDRAULIC CONCRETE WITH A MODERN REPRODUCTION OF VITRUVIAN HYDRAULIC CONCRETE , 2008 .

[26]  E. Winkler,et al.  THE JUDICIOUS SELECTION AND PRESERVATION OF TUFF AND TRAVERTINE BUILDING STONE IN ANCIENT ROME , 2005 .

[27]  Steven M. Cramer,et al.  The ROMACONS Project: a Contribution to the Historical and Engineering Analysis of Hydraulic Concrete in Roman Maritime Structures , 2004 .

[28]  M. G. Best Igneous and Metamorphic Petrology , 1982 .

[29]  H. Longerich,et al.  The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM- ICP-MS) in the Earth sciences , 1995 .

[30]  G. M. Crisci,et al.  PROVENANCE OF THE LIMESTONE USED IN TEOTIHUACAN (MEXICO): A METHODOLOGICAL APPROACH* , 2009 .

[31]  Domenico Miriello,et al.  EFFECTS OF MILLING: A POSSIBLE FACTOR INFLUENCING THE DURABILITY OF HISTORICAL MORTARS , 2009 .

[32]  M. Garcia‐Valles,et al.  DATING ANCIENT LIME MORTARS BY GEOCHEMICAL AND MINERALOGICAL ANALYSIS , 1996 .

[33]  L. Leoni,et al.  Metamorphic carbonate ejecta from vesuvius plinian eruptions: Evidence of the occurrence of shallow magma chambers , 1980 .

[34]  Ye Qing,et al.  A comparative study on the pozzolanic activity between nano-SiO2 and silica fume , 2006 .

[35]  C. Rochelle,et al.  Chemical containment of waste in the geosphere , 1999, Geological Society, London, Special Publications.

[36]  Egon Althaus,et al.  Pozzolanic Activity of Volcanic Tuff and Suevite: Effects of Calcination , 1998 .

[37]  Maria Pia Riccardi,et al.  CHARACTERIZATION OF PLASTERS AND MORTARS AS A TOOL IN ARCHAEOLOGICAL STUDIES : THE CASE OF LARDIRAGO CASTLE IN PAVIA, NORTHERN ITALY , 2007 .

[38]  A. Moropoulou,et al.  Characterization of the lumps in the mortars of historic masonry , 1995 .

[39]  L. Richardson Pompeii : an architectural history , 1990 .

[40]  M. Franzini,et al.  A simple method to evaluate the matrix effects in X-Ray fluorescence analysis , 1972 .

[41]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[42]  F. Massazza,et al.  10 – Pozzolana and Pozzolanic Cements , 1998 .

[43]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.

[44]  E. Hodgkinson,et al.  The mineralogy and geochemistry of cement/rock reactions: high-resolution studies of experimental and analogue materials , 1999, Geological Society, London, Special Publications.

[45]  Giuseppe Cultrone,et al.  Durability of masonry systems: A laboratory study , 2007 .

[46]  A. O. Koloski-Ostrow,et al.  Pompeii: Public and Private Life , 1998 .

[47]  R. W. Le Maitre,et al.  A Classification of igneous rocks and glossary of terms : recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks , 1989 .

[48]  Carmen Pons,et al.  Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain) , 2006 .

[49]  B. Vivo,et al.  Silicate-melt inclusions in recent Vesuvius lavas (1631–1944): II. Analytical chemistry , 1993 .

[50]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .