Functions of the skin microbiota in health and disease.

[1]  L. Engstrand,et al.  Is chronic plaque psoriasis triggered by microbiota in the skin? , 2013, The British journal of dermatology.

[2]  Se Jin Song,et al.  Cohabiting family members share microbiota with one another and with their dogs , 2013, eLife.

[3]  P. Gonçalves,et al.  Living and Thriving on the Skin: Malassezia Genomes Tell the Story , 2013, mBio.

[4]  J. Segre,et al.  The Neuropathic Diabetic Foot Ulcer Microbiome Is Associated With Clinical Factors , 2013, Diabetes.

[5]  Chun-Ming Huang,et al.  Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus , 2013, PloS one.

[6]  R. Gallo,et al.  Innate immune defense system of the skin. , 2013, Veterinary dermatology.

[7]  B. Igyártó,et al.  Antigen presentation by Langerhans cells. , 2013, Current opinion in immunology.

[8]  T. Iwamoto,et al.  Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction , 2013, Journal of bacteriology.

[9]  Karsten Zengler,et al.  The microbiome extends to subepidermal compartments of normal skin , 2012, Nature Communications.

[10]  J. Clemente,et al.  Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents , 2012, The ISME Journal.

[11]  Curtis Huttenhower,et al.  Chapter 12: Human Microbiome Analysis , 2012, PLoS Comput. Biol..

[12]  N. Fierer,et al.  A Jungle in There: Bacteria in Belly Buttons are Highly Diverse, but Predictable , 2012, PloS one.

[13]  K. Kavanagh,et al.  Potential role of Demodex mites and bacteria in the induction of rosacea. , 2012, Journal of medical microbiology.

[14]  S. Conlan,et al.  Species-Level Analysis of DNA Sequence Data from the NIH Human Microbiome Project , 2012, PloS one.

[15]  Julia Oh,et al.  Shifts in human skin and nares microbiota of healthy children and adults , 2012, Genome Medicine.

[16]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[17]  A. Di Nardo,et al.  Commensal Bacteria Lipoteichoic Acid Increases Skin Mast Cell Antimicrobial Activity against Vaccinia Viruses , 2012, The Journal of Immunology.

[18]  O. Dereure,et al.  Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing , 2012, PloS one.

[19]  C. Baecher-Allan,et al.  Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. , 2012, Immunity.

[20]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[21]  D. Gevers,et al.  The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. , 2012, The Journal of allergy and clinical immunology.

[22]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[23]  N. Romani,et al.  Changing views of the role of Langerhans cells. , 2012, The Journal of investigative dermatology.

[24]  H. Kong,et al.  Skin Microbiome: Looking Back to Move Forward , 2011, The Journal of investigative dermatology.

[25]  J. Segre,et al.  Interaction of the microbiome with the innate immune response in chronic wounds. , 2012, Advances in experimental medicine and biology.

[26]  Yoshinori Sugiyama,et al.  Activation of TLR2 Enhances Tight Junction Barrier in Epidermal Keratinocytes , 2011, The Journal of Immunology.

[27]  J. Segre,et al.  The skin microbiome , 2011, Nature Reviews Microbiology.

[28]  S. Dowd,et al.  Diversity of the Human Skin Microbiome Early in Life , 2011, The Journal of investigative dermatology.

[29]  R. Gallo,et al.  Microbial Symbiosis with the Innate Immune Defense System of the Skin , 2011, The Journal of investigative dermatology.

[30]  H. Kong,et al.  Skin microbiome: genomics-based insights into the diversity and role of skin microbes. , 2011, Trends in molecular medicine.

[31]  A. Iwasaki,et al.  Microbiota regulates immune defense against respiratory tract influenza A virus infection , 2011, Proceedings of the National Academy of Sciences.

[32]  Martin Schaller,et al.  Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. , 2011, The Journal of investigative dermatology.

[33]  F. Powell,et al.  Demodex Mites – Commensals, Parasites or Mutualistic Organisms , 2011, Dermatology.

[34]  J. Neu,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2011 .

[35]  J. Neu,et al.  Succession of microbial consortia in the developing infant gut microbiome , 2011 .

[36]  Lionel Fry,et al.  Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin , 2011, Archives of Dermatological Research.

[37]  S. Mazmanian,et al.  Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? , 2010, Science.

[38]  Allen F Ryan,et al.  Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. , 2010, The Journal of investigative dermatology.

[39]  Martin J. Blaser,et al.  Quantitation of Major Human Cutaneous Bacterial and Fungal Populations , 2010, Journal of Clinical Microbiology.

[40]  Evan S Snitkin,et al.  Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response , 2010, Proceedings of the National Academy of Sciences.

[41]  J. Izard,et al.  The Human Oral Microbiome , 2010, Journal of bacteriology.

[42]  C. Buck,et al.  Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. , 2010, Cell host & microbe.

[43]  Yoshimitsu Mizunoe,et al.  Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization , 2010, Nature.

[44]  Chun-Ming Huang,et al.  Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. , 2010, The Journal of investigative dermatology.

[45]  Jeffrey N. Weiser,et al.  Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity , 2010, Nature Medicine.

[46]  V. Nizet,et al.  Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus , 2010, PloS one.

[47]  V. Nizet,et al.  Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. , 2010, The Journal of investigative dermatology.

[48]  R. Knight,et al.  Bacterial Community Variation in Human Body Habitats Across Space and Time , 2009, Science.

[49]  Chun-Ming Huang,et al.  Commensal bacteria regulate TLR3-dependent inflammation following skin injury , 2009, Nature Medicine.

[50]  Chun-Ming Huang,et al.  Histone H4 is a major component of the antimicrobial action of human sebocytes. , 2009, The Journal of investigative dermatology.

[51]  Frank O. Nestle,et al.  Skin immune sentinels in health and disease , 2009, Nature Reviews Immunology.

[52]  M. Otto Staphylococcus epidermidis — the 'accidental' pathogen , 2009, Nature Reviews Microbiology.

[53]  C. Deming,et al.  Topographical and Temporal Diversity of the Human Skin Microbiome , 2009, Science.

[54]  Ruth Ann Luna,et al.  Metagenomic pyrosequencing and microbial identification. , 2009, Clinical chemistry.

[55]  H. Sax,et al.  Foreign body infections due to Staphylococcus epidermidis , 2009, Annals of medicine.

[56]  M. C. Bastos,et al.  Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. , 2009, Current pharmaceutical biotechnology.

[57]  J. Brandner,et al.  The skin: an indispensable barrier , 2008, Experimental dermatology.

[58]  R. Knight,et al.  The influence of sex, handedness, and washing on the diversity of hand surface bacteria , 2008, Proceedings of the National Academy of Sciences.

[59]  Martin J. Blaser,et al.  Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions , 2008, PloS one.

[60]  R. Gallo,et al.  Antimicrobial peptides, skin infections, and atopic dermatitis. , 2008, Seminars in cutaneous medicine and surgery.

[61]  V. Nizet,et al.  Innate barriers against infection and associated disorders. , 2008, Drug discovery today. Disease mechanisms.

[62]  M. Blaser,et al.  Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. , 2008, FEMS yeast research.

[63]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[64]  S. Delaney,et al.  Mite‐related bacterial antigens stimulate inflammatory cells in rosacea , 2007, The British journal of dermatology.

[65]  K. Wilke,et al.  A short history of sweat gland biology , 2007, International journal of cosmetic science.

[66]  M. Blaser,et al.  Molecular analysis of human forearm superficial skin bacterial biota , 2007, Proceedings of the National Academy of Sciences.

[67]  Chi-Hong Tseng,et al.  Molecular Analysis of Fungal Microbiota in Samples from Healthy Human Skin and Psoriatic Lesions , 2006, Journal of Clinical Microbiology.

[68]  C. Zouboulis,et al.  Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. , 2006, Microbes and infection.

[69]  J. Segre,et al.  Epidermal barrier formation and recovery in skin disorders. , 2006, The Journal of clinical investigation.

[70]  Colin N A Palmer,et al.  Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis , 2006, Nature Genetics.

[71]  S. Stevanović,et al.  Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. , 2006, The Journal of investigative dermatology.

[72]  P. Elias Stratum corneum defensive functions: an integrated view. , 2005, The Journal of investigative dermatology.

[73]  K. Dietz,et al.  Deficiency of Dermcidin-Derived Antimicrobial Peptides in Sweat of Patients with Atopic Dermatitis Correlates with an Impaired Innate Defense of Human Skin In Vivo1 , 2005, The Journal of Immunology.

[74]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[75]  Yoshihiro Hasegawa,et al.  Identification of New Odoriferous Compounds in Human Axillary Sweat , 2004, Chemistry & biodiversity.

[76]  C. Garbe,et al.  Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions , 2004, The British journal of dermatology.

[77]  P. Dürre,et al.  The Complete Genome Sequence of Propionibacterium Acnes, a Commensal of Human Skin , 2004, Science.

[78]  J. Schmid,et al.  Identification of Odoriferous Sulfanylalkanols in Human Axilla Secretions and Their Formation through Cleavage of Cysteine Precursors by a CS Lyase Isolated from Axilla bacteria , 2004, Chemistry & biodiversity.

[79]  T. Kupper,et al.  Immune surveillance in the skin: mechanisms and clinical consequences , 2004, Nature Reviews Immunology.

[80]  C. Garbe,et al.  Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek BDermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol 151:534-539 , 2004 .

[81]  C. Garbe,et al.  Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. , 2002, The Journal of investigative dermatology.

[82]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[83]  Elaine Fuchs,et al.  Getting under the skin of epidermal morphogenesis , 2002, Nature Reviews Genetics.

[84]  Abeck,et al.  Staphylococcus aureus colonization in atopic dermatitis and its therapeutic implications , 1998, The British journal of dermatology.

[85]  W D James,et al.  Microbial ecology of the skin. , 1988, Annual review of microbiology.

[86]  K. T. Holland,et al.  The microbial ecology of pilosebaceous units isolated from human skin. , 1984, Journal of general microbiology.

[87]  R. Stevens,et al.  Differential quantitation of surface and subsurface bacteria of normal skin by the combined use of the cotton swab and the scrub methods , 1976, Journal of clinical microbiology.