Variational data analysis with control of the forecast bias

We propose a methodology for the treatment of the systematic model error in variational data assimilation. The principle of the method is to add a systematic error correction term in the model equations and to include it in the variational assimilation control vector. This method is applied to a simplified ocean circulation model in an identical twin experiment framework. It shows a noticeable improvement compared to the result of a classical variational assimilation scheme in which the systematic error is not corrected. The estimated systematic error correction term is sufficiently consistent with that needed by the model that it allows improvements not just to the analysis, but also during the forecast phase.

[1]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[2]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[3]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[4]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[5]  Y. Sasaki,et al.  An ObJective Analysis Based on the Variational Method , 1958 .

[6]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[7]  A. Piacentini,et al.  Determination of optimal nudging coefficients , 2003 .

[8]  E.,et al.  4D Variational Data Analysis with Imperfect Model , 2000 .

[9]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[10]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[11]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[12]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[13]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[14]  F. L. Dimet,et al.  Optimal Determination Of Nudging Coefficients , 2003 .

[15]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[16]  Sophie Durbiano,et al.  Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données , 2001 .

[17]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[18]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[19]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[20]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[21]  Robert Vautard,et al.  Reducing systematic errors by empirically correcting model errors , 2000 .

[22]  Nancy Nichols,et al.  Adjoint Methods in Data Assimilation for Estimating Model Error , 2000 .

[23]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .