South African Safety Assessment Framework for the Pebble Bed Modular Reactor
暂无分享,去创建一个
It is planned to construct a first of a kind Pebble Bed Modular Reactor (PBMR) in South Africa. A need has been recognized to accompany the licensing process for the PBMR with independent safety assessments to ensure that the safety case submitted by the applicant complies with the licensing requirements of the NNR. At the HTR 2006 Conference, the framework and major challenges on safety assessment that the South African National Nuclear Regulator (NNR) faces in developing and applying appropriate strategies and tools were presented. This paper discusses the current status of the various NNR assessment activities and describes how this will be considered in the NNR Final Report on the PBMR Safety Case. The traditional safety assessment process has been adapted to take into account the developmental nature of the project. By performing safety assessments, the designer and applicant must ensure that the design as proposed for construction and as-built meets the safety requirements defined by the regulatory framework. The regulator performs independent safety assessments, including independent analyses in areas deemed safety significant and potentially safety significant. The developmental nature of the project also led to the identification of a series of regulatory assessment activities preceding the formal assessment of the safety case. Besides an assessment of the resolution of Key Licensing Issues which have been defined in an early stage of the project and are discussed in /1/, these activities comprise the participation in an SAR Early Intervention Process, the execution of a regulatory HAZOP and the development of a regulatory assessment specification for the formal assessment of the safety case. This paper briefly describes these activities and their current status. During the last two years, significant progress was made with the development or adjustment of tools for the independent analysis by the regulator of the steady state core design, of the transient neutronic/thermal hydraulic behaviour of the reactor, of fission product release from the fuel elements, and of activation of fuel matrix and graphite impurities.Copyright © 2008 by ASME