An FPTAS for the parametric knapsack problem

Abstract In this paper, we investigate the parametric knapsack problem, in which the item profits are affine functions depending on a real-valued parameter. The aim is to provide a solution for all values of the parameter. It is well-known that any exact algorithm for the problem may need to output an exponential number of knapsack solutions. We present a fully polynomial-time approximation scheme (FPTAS) for the problem that, for any desired precision e ∈ ( 0 , 1 ) , computes ( 1 − e ) -approximate solutions for all values of the parameter. This is the first FPTAS for the parametric knapsack problem that does not require the slopes and intercepts of the affine functions to be non-negative but works for arbitrary integral values. Our FPTAS outputs O ( n 2 e ) knapsack solutions and runs in strongly polynomial-time O ( n 2 e ⋅ A ( n , e ) ) , where A ( n , e ) denotes the running time of any FPTAS for the traditional (non-parametric) knapsack problem. Even for the special case of positive input data, this is the first FPTAS with a strongly polynomial running time.

[1]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[2]  Hans Kellerer,et al.  Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem , 2004, J. Comb. Optim..

[3]  Maria Grazia Scutellà,et al.  A note on the parametric maximum flow problem and some related reoptimization issues , 2007, Ann. Oper. Res..

[4]  Clemens Thielen,et al.  Approximation schemes for the parametric knapsack problem , 2017, Inf. Process. Lett..

[5]  Hans Kellerer,et al.  Approximating Multi-objective Knapsack Problems , 2001, WADS.

[6]  Patricia J. Carstensen The complexity of some problems in parametric linear and combinatorial programming , 1983 .

[7]  Osman Oguz,et al.  A fully polynomial approximation algorithm for the 0-1 knapsack problem , 1981 .

[8]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[10]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[11]  Hans Kellerer,et al.  Approximating Multiobjective Knapsack Problems , 2002, Manag. Sci..

[12]  S. Thomas McCormick Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow , 1999, Oper. Res..

[13]  Ketan Mulmuley,et al.  A Lower Bound for the Shortest Path Problem , 2001, J. Comput. Syst. Sci..

[14]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[15]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[16]  Ketan Mulmuley,et al.  A lower bound for the shortest path problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[17]  S. Thomas McCormick,et al.  Fast algorithms for parametric scheduling come from extensions to parametric maximum flow , 1996, STOC '96.

[18]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[19]  Hans Kellerer,et al.  A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem , 1999, J. Comb. Optim..

[20]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[21]  Leonidas J. Guibas,et al.  Parametric and kinetic minimum spanning trees , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[22]  M. Eben-Chaime Parametric solution for linear bicriteria knapsack models , 1996 .

[23]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[24]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..