暂无分享,去创建一个
[1] David Eppstein,et al. Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..
[2] Hans Kellerer,et al. Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem , 2004, J. Comb. Optim..
[3] Maria Grazia Scutellà,et al. A note on the parametric maximum flow problem and some related reoptimization issues , 2007, Ann. Oper. Res..
[4] Clemens Thielen,et al. Approximation schemes for the parametric knapsack problem , 2017, Inf. Process. Lett..
[5] Hans Kellerer,et al. Approximating Multi-objective Knapsack Problems , 2001, WADS.
[6] Patricia J. Carstensen. The complexity of some problems in parametric linear and combinatorial programming , 1983 .
[7] Osman Oguz,et al. A fully polynomial approximation algorithm for the 0-1 knapsack problem , 1981 .
[8] Robert E. Tarjan,et al. A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..
[9] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[10] John Hershberger,et al. Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..
[11] Hans Kellerer,et al. Approximating Multiobjective Knapsack Problems , 2002, Manag. Sci..
[12] S. Thomas McCormick. Fast Algorithms for Parametric Scheduling Come From Extensions to Parametric Maximum Flow , 1999, Oper. Res..
[13] Ketan Mulmuley,et al. A Lower Bound for the Shortest Path Problem , 2001, J. Comput. Syst. Sci..
[14] Hans Kellerer,et al. Knapsack problems , 2004 .
[15] Robert E. Tarjan,et al. Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.
[16] Ketan Mulmuley,et al. A lower bound for the shortest path problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.
[17] S. Thomas McCormick,et al. Fast algorithms for parametric scheduling come from extensions to parametric maximum flow , 1996, STOC '96.
[18] Eugene L. Lawler,et al. Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..
[19] Hans Kellerer,et al. A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem , 1999, J. Comb. Optim..
[20] Richard M. Karp,et al. Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..
[21] Leonidas J. Guibas,et al. Parametric and kinetic minimum spanning trees , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[22] M. Eben-Chaime. Parametric solution for linear bicriteria knapsack models , 1996 .
[23] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.
[24] Patricia J. Carstensen. Complexity of some parametric integer and network programming problems , 1983, Math. Program..