Control of Inhomogeneous Ensembles

In this thesis, we study a class of control problems which involves controlling a large number of dynamical systems with different values of parameters governing the system dynamics by using the same control signal. We call such problems control of inhomogeneous ensembles. The motivation for looking into these problems comes from the manipulation of an ensemble of nuclear spins in Nuclear Magnetic Resonance (NMR) spectroscopy and imaging with dispersion in natural frequencies and the strengths of the applied radio frequency (rf) field. A systematic study of these systems has immediate applications to broad areas of the control of systems in quantum and nano domains, such as coherent spectroscopy and quantum information processing. From the standpoint of mathematical control theory, the challenge is to simultaneously steer a continuum of systems between points of interest with the same control signal. This raises the intriguing question about ensemble controllability. We show that controllability of an ensemble can be understood by the study of the algebra of polynomials defined by the noncommuting vector fields governing the system dynamics. In practical magnetic resonance applications, this work leads to the design of a compensating pulse sequence. The new mathematical structures arising from such problems are excellent motivation for new developments in control theory.

[1]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[2]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[3]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[4]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[5]  E. Schneider,et al.  Composite pulses without phase distortion , 1985 .

[6]  Jr-Shin Li,et al.  Sensitivity enhancement in NMR of macromolecules by application of optimal control theory , 2005, Journal of biomolecular NMR.

[7]  Navin Khaneja,et al.  On the Stochastic Control of Quantum Ensembles , 2000 .

[8]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[9]  G. Drobny,et al.  Quantum Description of High‐Resolution NMR in Liquids , 1990 .

[10]  Burkhard Luy,et al.  Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[12]  Richard R. Ernst,et al.  Composite pulses constructed by a recursive expansion procedure , 1983 .

[13]  P. Krishnaprasad,et al.  Control Systems on Lie Groups , 2005 .

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  Michael Garwood,et al.  Symmetric pulses to induce arbitrary flip angles with compensation for rf inhomogeneity and resonance offsets , 1991 .

[16]  R. Brüschweiler,et al.  Molecular dynamics monitored by cross‐correlated cross relaxation of spins quantized along orthogonal axes , 1992 .

[17]  Malcolm H. Levitt,et al.  Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity , 1982 .

[18]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[19]  S Clare,et al.  Compensating for B(1) inhomogeneity using active transmit power modulation. , 2001, Magnetic resonance imaging.

[20]  S. Wimperis,et al.  Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .

[21]  Thomas H. Mareci,et al.  Selective inversion radiofrequency pulses by optimal control , 1986 .

[22]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[23]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[24]  N. Khaneja,et al.  Broadband relaxation-optimized polarization transfer in magnetic resonance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J S Leigh,et al.  The application of spinors to pulse synthesis and analysis , 1989, Magnetic resonance in medicine.

[26]  Jonathan A. Jones Robust Ising gates for practical quantum computation , 2003 .

[27]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[28]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[29]  M. Bowman,et al.  Modern pulsed and continuous-wave electron spin resonance , 1990 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Navin Khaneja,et al.  Broadband geodesic pulses for three spin systems: time-optimal realization of effective trilinear coupling terms and indirect SWAP gates. , 2003, Journal of magnetic resonance.

[32]  F. Yamaguchi,et al.  Quantum Computation in a One-Dimensional Crystal Lattice with NMR Force Microscopy , 2008 .

[33]  Gary Taubes,et al.  Double Helix Does Chemistry at a Distance—But How? , 1997, Science.

[34]  M. Crisp,et al.  Adiabatic-Following Approximation , 1973 .

[35]  H Rabitz,et al.  Coherent control of quantum dynamics: the dream is alive. , 2008, Science.

[36]  Klaus Molmer,et al.  Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping , 2003, quant-ph/0305060.

[37]  Ray Freeman,et al.  Compensation for Pulse Imperfections in NMR Spin-Echo Experiments , 1981 .

[38]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[39]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[40]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[41]  K. Nishimura,et al.  The Effect of RF Inhomogeneity on Heteronuclear Dipolar Recoupling in Solid State NMR: Practical Performance of SFAM and REDOR , 2001 .

[42]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[43]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[44]  Mark J Howard,et al.  Protein NMR spectroscopy , 1998, Current Biology.

[45]  C. Zwahlen,et al.  Selective Pulses in NMR , 1998 .

[46]  Optimal control of coupled spin dynamics under cross-correlated relaxation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[47]  A. J. Shaka,et al.  Composite pulses with dual compensation , 1983 .

[48]  Ray Freeman,et al.  NMR population inversion using a composite pulse , 1979 .

[49]  R. Riek,et al.  Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[51]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[52]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[53]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[54]  William J. Thompson,et al.  Spheroidal wave functions , 1999, Comput. Sci. Eng..

[55]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[56]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[57]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[58]  Allen N. Garroway,et al.  NMR J cross-polarization in liquids: A refocusing method , 1979 .

[59]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[60]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[61]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[62]  Hoult,et al.  Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. , 1985, Physical review. A, General physics.

[63]  K. Schmidt-Rohr,et al.  Multidimensional Solid-State Nmr and Polymers , 1994 .

[64]  Timo O. Reiss,et al.  Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.

[65]  R. Tycko,et al.  Broadband Population Inversion , 1983 .

[66]  Navin Khaneja,et al.  Composite dipolar recoupling: anisotropy compensated coherence transfer in solid-state nuclear magnetic resonance. , 2006, The Journal of chemical physics.

[67]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[68]  Jr-Shin Li,et al.  Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles , 2005 .

[69]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.