Approximating the partition function of the ferromagnetic Potts model

We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q > 2. Specifically, we show that the partition function is hard for the complexity class #RHPi under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first-order phase transition of the “random cluster” model, which is a probability distribution on graphs that is closely related to the q-state Potts model.

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[4]  R. Holley Remarks on the FKG inequalities , 1974 .

[5]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[6]  Letizia Tanca,et al.  What you Always Wanted to Know About Datalog (And Never Dared to Ask) , 1989, IEEE Trans. Knowl. Data Eng..

[7]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Dominic J. A. Welsh,et al.  The Computational Complexity of the Tutte Plane: the Bipartite Case , 1992, Combinatorics, Probability and Computing.

[9]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[10]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[11]  Alan M. Frieze,et al.  Electronic Colloquium on Computational Complexity Polynomial Time Randomised Approximation Schemes for Tutte-grr Othendieck Invariants: the Dense Case , 2022 .

[12]  G. Grimmett Potts models and random-cluster processes with many-body interactions , 1994 .

[13]  G. Grimmett,et al.  The random-cluster model on the complete graph , 1996 .

[14]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[15]  Mark Jerrum,et al.  The Swendsen-Wang process does not always mix rapidly , 1997, STOC '97.

[16]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[17]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[18]  Martin E. Dyer,et al.  On the relative complexity of approximate counting problems , 2000, APPROX.

[19]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[20]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[21]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[22]  Steven M. Kelk On the relative complexity of approximately counting H-colourings , 2003 .

[23]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[24]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..

[25]  Dirk L. Vertigan,et al.  The Computational Complexity of Tutte Invariants for Planar Graphs , 2005, SIAM J. Comput..

[26]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[27]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[28]  Tomasz Luczak,et al.  The phase transition in the cluster‐scaled model of a random graph , 2006, Random Struct. Algorithms.

[29]  Leslie Ann Goldberg,et al.  The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.

[30]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[31]  Inapproximability of the Tutte polynomial , 2007, STOC '07.

[32]  S. Caracciolo,et al.  Grassmann integral representation for spanning hyperforests , 2007, 0706.1509.

[33]  Bill Jackson,et al.  Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids , 2008, J. Comb. Theory, Ser. B.

[34]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[35]  Leslie Ann Goldberg,et al.  Approximating the Partition Function of the Ferromagnetic Potts Model , 2010, ICALP.

[36]  Magnus Bordewich,et al.  On the Approximation Complexity Hierarchy , 2010, WAOA.

[37]  Qi Ge,et al.  A Graph Polynomial for Independent Sets of Bipartite Graphs , 2009, Combinatorics, Probability and Computing.

[38]  Leslie Ann Goldberg,et al.  A Counterexample to rapid mixing of the Ge-Stefankovic Process , 2011, ArXiv.

[39]  Leslie Ann Goldberg,et al.  The complexity of approximately counting stable matchings , 2010, Theor. Comput. Sci..

[40]  Leslie Ann Goldberg,et al.  Inapproximability of the Tutte polynomial of a planar graph , 2012, computational complexity.

[41]  Qi Ge,et al.  A Graph Polynomial for Independent Sets of Bipartite Graphs , 2012, Comb. Probab. Comput..