Optimal Distance Labeling for Interval and Circular-Arc Graphs

In this paper we design a distance labeling scheme with \(\mathcal{O}(log n)\) bit labels for interval graphs and circular-arc graphs with n vertices. The set of all the labels is constructible in \(\mathcal{O}(n)\) time if the interval representation of the graph is given and sorted. As a byproduct we give a new and simpler \(\mathcal{O}(n)\) space data-structure computable after \(\mathcal{O}(n)\) preprocessing time, and supporting constant worst-case time distance queries for interval and circular-arc graphs. These optimal bounds improve the previous scheme of Katz, Katz, and Peleg (STACS ’00) by a log n factor. To the best of our knowledge, the interval graph family is the first hereditary family having 2Ω(n log n) unlabeled n-vertex graphs and supporting a o(log2 n) bit distance labeling scheme.

[1]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[2]  Der-Tsai Lee,et al.  Solving the all-pair shortest path query problem on interval and circular-arc graphs , 1998 .

[3]  David Peleg,et al.  Distance labeling schemes for well-separated graph classes , 2000, Discret. Appl. Math..

[4]  Cyril Gavoille,et al.  Routing in distributed networks: overview and open problems , 2001, SIGA.

[5]  Celina M. H. de Figueiredo,et al.  A Linear-Time Algorithm for Proper Interval Graph Recognition , 1995, Inf. Process. Lett..

[6]  Stephen Alstrup,et al.  Small induced-universal graphs and compact implicit graph representations , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[7]  Friedhelm Meyer auf der Heide,et al.  Algorithms — ESA 2001 , 2001, Lecture Notes in Computer Science.

[8]  Philip Bille,et al.  Labeling schemes for small distances in trees , 2003, SODA '03.

[9]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[10]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[11]  Mikkel Thorup,et al.  Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[12]  David Peleg,et al.  Labeling Schemes for Dynamic Tree Networks , 2002, STACS.

[13]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[14]  Haim Kaplan,et al.  A comparison of labeling schemes for ancestor queries , 2002, SODA '02.

[15]  Stephen Alstrup,et al.  Nearest common ancestors: a survey and a new distributed algorithm , 2002, SPAA.

[16]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[17]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[18]  Uzi Vishkin,et al.  Finding Level-Ancestors in Trees , 1994, J. Comput. Syst. Sci..

[19]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[20]  Mogens Nielsen,et al.  Mathematical Foundations of Computer Science 2000 , 2001, Lecture Notes in Computer Science.

[21]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[22]  Bruno Courcelle,et al.  Query efficient implementation of graphs of bounded clique-width , 2003, Discret. Appl. Math..

[23]  Haim Kaplan,et al.  Compact labeling schemes for ancestor queries , 2001, SODA '01.

[24]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[25]  NaorMoni,et al.  Implicit representation of graphs , 1992 .

[26]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[27]  Jørgen Bang-Jensen,et al.  Local Tournaments and Proper Circular Arc Gaphs , 1990, SIGAL International Symposium on Algorithms.

[28]  David Peleg,et al.  Labeling schemes for flow and connectivity , 2002, SODA '02.

[29]  P. Hanlon Counting interval graphs , 1982 .

[30]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[31]  D. Peleg Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[32]  David Peleg,et al.  Approximate Distance Labeling Schemes , 2001, ESA.