A guide to analysis of cardiac phenotypes in the zebrafish embryo.

The zebrafish is an ideal model organism for investigating the molecular mechanisms underlying cardiogenesis, due to the powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. A continually increasing number of studies are uncovering mutations, morpholinos, and small molecules that cause striking cardiac defects and disrupt blood circulation in the zebrafish embryo. Such defects can result from a wide variety of origins including defects in the specification or differentiation of cardiac progenitor cells; errors in the morphogenesis of the heart tube, the cardiac chambers, or the atrioventricular canal or problems with establishing proper cardiac function. An extensive arsenal of techniques is available to distinguish between these possibilities and thereby decipher the roots of cardiac defects. In this chapter, we provide a guide to the experimental strategies that are particularly effective for the characterization of cardiac phenotypes in the zebrafish embryo.

[1]  A. Amores,et al.  Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. , 2001, Development.

[2]  B. Pelster,et al.  Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). , 1996, Circulation research.

[3]  W. Rottbauer,et al.  Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. , 2001, Developmental cell.

[4]  A. Tallafuss,et al.  Tracing of her5 progeny in zebrafish transgenics reveals the dynamics of midbrain-hindbrain neurogenesis and maintenance , 2003, Development.

[5]  L. Clijsters,et al.  Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart , 2009, Development.

[6]  A. Yamaguchi,et al.  The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial Precursors , 2009, Science.

[7]  Jeffrey J Schoenebeck,et al.  Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics. , 2007, Seminars in cell & developmental biology.

[8]  Y. Jan,et al.  Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. , 2001, Current biology : CB.

[9]  D. Stainier,et al.  The Spinster Homolog, Two of Hearts, Is Required for Sphingosine 1-Phosphate Signaling in Zebrafish , 2008, Current Biology.

[10]  M. Fishman,et al.  heart of glass Regulates the Concentric Growth of the Heart in Zebrafish , 2003, Current Biology.

[11]  F. Hsieh,et al.  Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[12]  Wei Huang,et al.  Myofibrillogenesis in the developing zebrafish heart: A functional study of tnnt2. , 2009, Developmental biology.

[13]  Didier Y. R. Stainier,et al.  Cardiac troponin T is essential in sarcomere assembly and cardiac contractility , 2002, Nature Genetics.

[14]  Le A. Trinh,et al.  The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. , 2000, Genes & development.

[15]  D. Yelon,et al.  Cardiac development in zebrafish: coordination of form and function. , 2002, Seminars in cell & developmental biology.

[16]  R. Roberts,et al.  A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration , 2006, Cell.

[17]  Herwig Baier,et al.  Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System , 2008, PLoS biology.

[18]  D. Stainier,et al.  casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. , 2001, Genes & development.

[19]  Guson Kang,et al.  Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. , 2008, Genes & development.

[20]  Ryan M. Anderson,et al.  Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes , 2010, Nature.

[21]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[22]  M. Fishman,et al.  Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Karen Ocorr,et al.  A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. , 2009, BioTechniques.

[24]  A. Schier,et al.  Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. , 1996, Development.

[25]  R Y Tsien,et al.  Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[27]  H. Yost,et al.  Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo , 2009, Development.

[28]  Le A. Trinh,et al.  Fibronectin regulates epithelial organization during myocardial migration in zebrafish. , 2004, Developmental cell.

[29]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[30]  Jan Huisken,et al.  Selective plane illumination microscopy techniques in developmental biology , 2009, Development.

[31]  D. Stainier,et al.  casanova plays an early and essential role in endoderm formation in zebrafish. , 1999, Developmental biology.

[32]  D. Yelon,et al.  Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function , 2010, Development.

[33]  C. Nüsslein-Volhard,et al.  Mutations affecting the cardiovascular system and other internal organs in zebrafish. , 1996, Development.

[34]  D. Meyer,et al.  Organization of cardiac chamber progenitors in the zebrafish blastula , 2004, Development.

[35]  S. Abdelilah-Seyfried,et al.  Asymmetric Involution of the Myocardial Field Drives Heart Tube Formation in Zebrafish , 2008, Circulation research.

[36]  Jeroen Bakkers,et al.  Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. , 2008, Developmental cell.

[37]  M. Fishman,et al.  Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul , 2001, Current Biology.

[38]  S. Burgess,et al.  Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. , 2001, Development.

[39]  D. Srivastava,et al.  The genetics of cardiac birth defects. , 2007, Seminars in cell & developmental biology.

[40]  Calum A. MacRae,et al.  Wnt11 patterns a myocardial electrical gradient via regulation of the L-type Ca2+ channel , 2010, Nature.

[41]  David Milan,et al.  Small Molecule Screening in Zebrafish , 2010 .

[42]  D. Stainier,et al.  Gata5 is required for the development of the heart and endoderm in zebrafish. , 1999, Genes & development.

[43]  S. Horne,et al.  Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. , 1999, Developmental biology.

[44]  Didier Y. R. Stainier,et al.  Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish , 2003, Development.

[45]  B. Bruneau The developmental genetics of congenital heart disease , 2008, Nature.

[46]  D. Stainier,et al.  High-speed imaging of developing heart valves reveals interplay of morphogenesis and function , 2008, Development.

[47]  E. Cuppen,et al.  The Wnt/beta-catenin pathway regulates cardiac valve formation. , 2003, Nature.

[48]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[49]  Rebecca D. Burdine,et al.  Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart , 2008, Proceedings of the National Academy of Sciences.

[50]  B. Pelster,et al.  Digital motion analysis as a tool for analysing the shape and performance of the circulatory system in transparent animals. , 2000, The Journal of experimental biology.

[51]  D. Stainier,et al.  UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. , 2001, Science.

[52]  Leonard I Zon,et al.  Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants , 2003, Nature Immunology.

[53]  Andrew M. Petzold,et al.  A primer for morpholino use in zebrafish. , 2009, Zebrafish.

[54]  Heather Verkade,et al.  Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development , 2005, Development.

[55]  Calum A. MacRae,et al.  Drugs That Induce Repolarization Abnormalities Cause Bradycardia in Zebrafish , 2003, Circulation.

[56]  Y. Jan,et al.  Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis , 2001, Current Biology.

[57]  D. Stainier,et al.  A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development , 2000, Nature.

[58]  S. Abdelilah-Seyfried,et al.  Heart and soul/PRKCi and nagie oko/Mpp5 regulate myocardial coherence and remodeling during cardiac morphogenesis , 2006, Development.

[59]  D. Srivastava,et al.  Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. , 2007, Circulation.

[60]  Huai-Jen Tsai,et al.  Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes , 2007, PLoS biology.

[61]  W. Rottbauer,et al.  Cardiac Myosin Light Chain-2: A Novel Essential Component of Thick-Myofilament Assembly and Contractility of the Heart , 2006, Circulation research.

[62]  Kimara L. Targoff,et al.  Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. , 2008, Developmental biology.

[63]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[64]  J. Hoffman,et al.  The incidence of congenital heart disease. , 2002, Journal of the American College of Cardiology.

[65]  P. Ingham,et al.  Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool , 2005, Science.

[66]  W. Rottbauer,et al.  VEGF-PLCgamma1 pathway controls cardiac contractility in the embryonic heart. , 2005, Genes & development.

[67]  M. Fishman,et al.  The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  D. Nicoll,et al.  Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Calum A MacRae,et al.  Notch1b and neuregulin are required for specification of central cardiac conduction tissue , 2006, Development.

[70]  D. Stainier,et al.  Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning. , 1998, Developmental genetics.

[71]  D. Yelon,et al.  Hoxb5b acts downstream of retinoic acid signaling in the forelimb field to restrict heart field potential in zebrafish. , 2008, Developmental cell.

[72]  Caroline E. Burns,et al.  The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis , 2010, Development.

[73]  Richard M White,et al.  Chemical genetic screening in the zebrafish embryo , 2009, Nature Protocols.

[74]  Dan M Roden,et al.  Drug-Sensitized Zebrafish Screen Identifies Multiple Genes, Including GINS3, as Regulators of Myocardial Repolarization , 2009, Circulation.

[75]  A. Schier,et al.  Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[76]  D. Yelon,et al.  Vessel and blood specification override cardiac potential in anterior mesoderm. , 2007, Developmental cell.

[77]  D. Yelon,et al.  Endocardium is necessary for cardiomyocyte movement during heart tube assembly , 2007, Development.

[78]  Mark C. Fishman,et al.  Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin , 2002, Nature Genetics.