Anchor free node tracking using ranges, odometry, and multidimensional scaling

This paper addresses the problem of estimating the positions of nodes in a mobile network over time, when pre-surveyed anchor nodes are not available. We do this by employing both inter-node range measurements and odometry data. Both types of measurement data are applied within the multidimensional scaling paradigm, which maps pairwise dissimilarity values into node coordinates. The mathematical treatment is presented, along with several advantages of our proposed approach. We demonstrate its performance through simulation across various parameter values. Further, we show the performance using real range and odometry data gathered from our CSOT mobile robot testbed.

[1]  Patrick J. F. Groenen,et al.  The Four Purposes of Multidimensional Scaling , 1997 .

[2]  Petros Drineas,et al.  Distance Matrix Reconstruction from Incomplete Distance Information for Sensor Network Localization , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[3]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[4]  Sangjoon Park,et al.  Anchor-Free Localization through Flip-Error-Resistant Map Stitching in Wireless Sensor Network , 2010, IEEE Transactions on Parallel and Distributed Systems.

[5]  Geert Leus,et al.  Dynamic Multidimensional Scaling for Low-Complexity Mobile Network Tracking , 2012, IEEE Transactions on Signal Processing.

[6]  Hing-Cheung So,et al.  A multidimensional scaling framework for mobile location using time-of-arrival measurements , 2005, IEEE Transactions on Signal Processing.

[7]  Wheeler Ruml,et al.  Improved MDS-based localization , 2004, IEEE INFOCOM 2004.

[8]  Robert J. Baxley,et al.  RadioBOT: A spatial cognitive radio testbed , 2013, 2013 IEEE Aerospace Conference.

[9]  Ala I. Al-Fuqaha,et al.  An intelligent data fusion technique based on the particle filter to perform precise outdoor localization , 2013, Int. J. Pervasive Comput. Commun..

[10]  Oh-Heum Kwon,et al.  Localization through Map Stitching in Wireless Sensor Networks , 2008, IEEE Transactions on Parallel and Distributed Systems.

[11]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[12]  Andrei Szabo,et al.  WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[13]  Geert Leus,et al.  Extending the Classical Multidimensional Scaling Algorithm Given Partial Pairwise Distance Measurements , 2010, IEEE Signal Processing Letters.

[14]  Giuseppe Thadeu Freitas de Abreu,et al.  Tracking Multiple Dynamic Targets with Multidimensional Scaling , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[15]  Frankie K. W. Chan,et al.  Efficient Weighted Multidimensional Scaling for Wireless Sensor Network Localization , 2009, IEEE Transactions on Signal Processing.

[16]  Alfred O. Hero,et al.  Distributed weighted-multidimensional scaling for node localization in sensor networks , 2006, TOSN.

[17]  Aboelmagd Noureldin,et al.  Enhanced mobile robot outdoor localization using INS/GPS integration , 2009, 2009 International Conference on Computer Engineering & Systems.

[18]  Fernando Torres Medina,et al.  Hybrid tracking of human operators using IMU/UWB data fusion by a Kalman filter , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[19]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.