Proceedings of the EXPERT Scientific and Technological Workshop

This paper presents results of a user survey for professional translators, which was aimed at identifying their needs regarding translation technologies. It focuses specifically on machine translation (MT), which user groups are more likely to adopt it and how they perceive technological advancements in this field. Based on the data, some connections could be made between the use of machine translation and translators’ domain of specialisation. However, future advancements of MT technology are perceived independently of the domain. Translators with advanced knowledge in IT tend to use MT more than the ones with less IT skills. Similarly, education in IT also has an effect on MT usage rate. Finally, we identified that more freelance translators who work with an agency tend to use MT more than those who work without an agency.

[1]  Helmut Schmid,et al.  Improvements in Part-of-Speech Tagging with an Application to German , 1999 .

[2]  Alexandra Birch,et al.  Metrics for MT evaluation: evaluating reordering , 2010, Machine Translation.

[3]  Bonnie Webber,et al.  Implicitation of Discourse Connectives in (Machine) Translation , 2013, DiscoMT@ACL.

[4]  George F. Foster,et al.  Batch Tuning Strategies for Statistical Machine Translation , 2012, NAACL.

[5]  Lucia Specia,et al.  Machine translation evaluation versus quality estimation , 2010, Machine Translation.

[6]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[7]  Michael Gamon,et al.  Sentence-level MT evaluation without reference translations: beyond language modeling , 2005, EAMT.

[8]  William C. Mann,et al.  RHETORICAL STRUCTURE THEORY: A THEORY OF TEXT ORGANIZATION , 1987 .

[9]  David Chiang,et al.  Hierarchical Phrase-Based Translation , 2007, CL.

[10]  Radu Soricut,et al.  TrustRank: Inducing Trust in Automatic Translations via Ranking , 2010, ACL.

[11]  Hermann Ney,et al.  HMM-Based Word Alignment in Statistical Translation , 1996, COLING.

[12]  Chunyu Kit,et al.  Extending Machine Translation Evaluation Metrics with Lexical Cohesion to Document Level , 2012, EMNLP.

[13]  Vladimir Eidelman,et al.  Polylingual Tree-Based Topic Models for Translation Domain Adaptation , 2014, ACL.

[14]  Mirella Lapata,et al.  Taxonomy Induction Using Hierarchical Random Graphs , 2012, NAACL.

[15]  Khalil Sima Fitting Sentence Level Translation Evaluation with Many Dense Features , 2014 .

[16]  Liang Huang,et al.  A Syntax-Directed Translator with Extended Domain of Locality , 2006 .

[17]  Tan. Liling Examining crosslingual word sense disambiguation. , 2013 .

[18]  Santanu Pal,et al.  Manawi: Using Multi-Word Expressions and Named Entities to Improve Machine Translation , 2014, WMT@ACL.

[19]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[20]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[21]  J. Greeno Gibson's affordances. , 1994, Psychological review.

[22]  Els Lefever,et al.  LT3: A Multi-modular Approach to Automatic Taxonomy Construction , 2015, *SEMEVAL.

[23]  Marine Carpuat,et al.  The Trouble with SMT Consistency , 2012, WMT@NAACL-HLT.

[24]  Paulo Gomes,et al.  The Impact of Distributional Metrics in the Quality of Relational Triples , 2010 .

[25]  Chris Callison-Burch,et al.  Paraphrasing with Bilingual Parallel Corpora , 2005, ACL.

[26]  Nello Cristianini,et al.  Estimating the Sentence-Level Quality of Machine Translation Systems , 2009, EAMT.

[27]  Sharon O'Brien,et al.  Translation as human–computer interaction , 2012 .

[28]  Chris Quirk,et al.  Dependency Treelet Translation: Syntactically Informed Phrasal SMT , 2005, ACL.

[29]  Alexander M. Fraser,et al.  Semi-Supervised Training for Statistical Word Alignment , 2006, ACL.

[30]  Ani Nenkova,et al.  Using Syntax to Disambiguate Explicit Discourse Connectives in Text , 2009, ACL.

[31]  Eric P. Xing,et al.  HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation , 2007, NIPS.

[32]  Daisuke Okanohara Jun A Discriminative Language Model with Pseudo-Negative Samples , 2007 .

[33]  Andy Way,et al.  Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation , 2006, WMT@HLT-NAACL.

[34]  Gareth J. F. Jones,et al.  DCU: Using Distributional Semantics and Domain Adaptation for the Semantic Textual Similarity SemEval-2015 Task 2 , 2015, SemEval@NAACL-HLT.

[35]  Lucia Specia,et al.  QuEst - A translation quality estimation framework , 2013, ACL.

[36]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[37]  Francis Bond,et al.  Sensible: L2 Translation Assistance by Emulating the Manual Post-Editing Process , 2014, SemEval@COLING.

[38]  John DeNero,et al.  A Constrained Viterbi Relaxation for Bidirectional Word Alignment , 2014, ACL.

[39]  Khurshid Ahmad,et al.  The head-modifier principle and multilingual term extraction , 2005, Natural Language Engineering.

[40]  John DeNero,et al.  Inducing Sentence Structure from Parallel Corpora for Reordering , 2011, EMNLP.

[41]  Josef van Genabith,et al.  USAAR-SHEFFIELD: Semantic Textual Similarity with Deep Regression and Machine Translation Evaluation Metrics , 2015, SemEval@NAACL-HLT.

[42]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[43]  Ellen Riloff,et al.  Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs , 2008, ACL.

[44]  Roland Kuhn,et al.  Discriminative Instance Weighting for Domain Adaptation in Statistical Machine Translation , 2010, EMNLP.

[45]  Christopher D. Manning,et al.  A Simple and Effective Hierarchical Phrase Reordering Model , 2008, EMNLP.

[46]  Davide Buscaldi,et al.  QASSIT: A Pretopological Framework for the Automatic Construction of Lexical Taxonomies from Raw Texts , 2015, *SEMEVAL.

[47]  Qun Liu,et al.  Open, web-based internationalization and localization tools , 2014 .

[48]  Philipp Koehn,et al.  Further Meta-Evaluation of Machine Translation , 2008, WMT@ACL.

[49]  Miriam Seghiri,et al.  Virtual corpora as documentation resources: Translating travel insurance documents (English-Spanish) , 2009 .

[50]  Dan Roth,et al.  Generating Confusion Sets for Context-Sensitive Error Correction , 2010, EMNLP.

[51]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[52]  José B. Mariño,et al.  N-gram-based Machine Translation , 2006, CL.

[53]  Gregory Grefenstette,et al.  INRIASAC: Simple Hypernym Extraction Methods , 2015, *SEMEVAL.

[54]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[55]  Lucia Specia,et al.  Multi-level Translation Quality Prediction with QuEst++ , 2015, ACL.

[56]  Robert L. Mercer,et al.  A Statistical Approach to Sense Disambiguation in Machine Translation , 1991, HLT.

[57]  Patrick Pantel,et al.  Automatically Labeling Semantic Classes , 2004, NAACL.

[58]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[59]  Hideki Mima,et al.  Automatic recognition of multi-word terms:. the C-value/NC-value method , 2000, International Journal on Digital Libraries.

[60]  John DeNero,et al.  Model-Based Aligner Combination Using Dual Decomposition , 2011, ACL.

[61]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[62]  Stephan Vogel,et al.  Improving Word Alignment with Language Model Based Confidence Scores , 2008, WMT@ACL.

[63]  Daniel Jurafsky,et al.  Discriminative Reordering with Chinese Grammatical Relations Features , 2009, SSST@HLT-NAACL.

[64]  Philipp Koehn,et al.  The MateCat Tool , 2014, COLING.

[65]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[66]  Sharon O'Brien,et al.  Methodologies for Measuring the Correlations between Post-Editing Effort and Machine Translatability , 2005, Machine Translation.

[67]  Gonzalo Iglesias,et al.  Fast and Accurate Preordering for SMT using Neural Networks , 2015, HLT-NAACL.

[68]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[69]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[70]  Philipp Koehn,et al.  Statistical Significance Tests for Machine Translation Evaluation , 2004, EMNLP.

[71]  Heidi Fox,et al.  Phrasal Cohesion and Statistical Machine Translation , 2002, EMNLP.

[72]  Ishwar K. Sethi,et al.  The performance analysis of a Chi-square similarity measure for topic related clustering of noisy transcripts , 2002, Object recognition supported by user interaction for service robots.

[73]  Stephan Vogel,et al.  Parallel Implementations of Word Alignment Tool , 2008, SETQALNLP.

[74]  Chin-Yew Lin,et al.  Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics , 2004, ACL.

[75]  Tomaz Erjavec,et al.  The JRC Collection of the ACQUIS Communautaire-A multilingual parallel corpus with 20+ languages , 2006 .

[76]  Philipp Koehn,et al.  Dynamic Topic Adaptation for Phrase-based MT , 2014, EACL.

[77]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[78]  Jason Eisner,et al.  Learning Linear Ordering Problems for Better Translation , 2009, EMNLP.

[79]  Mark Hopkins,et al.  Tuning as Ranking , 2011, EMNLP.

[80]  Kamadev Bhanuprasad,et al.  Errgrams – A Way to Improving ASR for Highly Inflected Dravidian Languages , 2008, IJCNLP.

[81]  Kamel Smaïli,et al.  “This sentence is wrong.” Detecting errors in machine-translated sentences , 2011, Machine Translation.

[82]  Mark Hopkins,et al.  Source-side Preordering for Translation using Logistic Regression and Depth-first Branch-and-Bound Search , 2014, EACL.

[83]  Khalil Sima'an,et al.  UvA-DARE ( Digital Academic Repository ) Latent Domain Translation Models in Mix-of-Domains Haystack , 2014 .

[84]  Vladimir Eidelman,et al.  Topic Models for Dynamic Translation Model Adaptation , 2012, ACL.

[85]  Anoop Sarkar,et al.  Mixing Multiple Translation Models in Statistical Machine Translation , 2012, ACL.

[86]  Tanja Schultz,et al.  Bilingual LSA-based adaptation for statistical machine translation , 2007, Machine Translation.

[87]  Andy Way,et al.  Facilitating Translation Using Source Language Paraphrase Lattices , 2010, EMNLP.

[88]  Chris Hokamp Leveraging NLP Technologies and Linked Open Data to Create Better CAT Tools , 2015 .

[89]  Chengqing Zong,et al.  Integrating Translation Memory into Phrase-Based Machine Translation during Decoding , 2013, ACL.

[90]  Noah A. Smith,et al.  A Simple, Fast, and Effective Reparameterization of IBM Model 2 , 2013, NAACL.

[91]  Qun Liu,et al.  A Dependency Treelet String Correspondence Model for Statistical Machine Translation , 2007, WMT@ACL.

[92]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[93]  Paul Buitelaar,et al.  SemEval-2015 Task 17: Taxonomy Extraction Evaluation (TExEval) , 2015, SemEval@NAACL-HLT.

[94]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[95]  Lucia Specia,et al.  Improving the Confidence of Machine Translation Quality Estimates , 2009, MTSUMMIT.

[96]  Carolina Scarton,et al.  Discourse and Document-level Information for Evaluating Language Output Tasks , 2015, NAACL.

[97]  João Graça,et al.  Building a Golden Collection of Parallel Multi-Language Word Alignment , 2008, LREC.

[98]  Hitoshi Isahara,et al.  Automatic Error Detection in the Japanese Learners’ English Spoken Data , 2003, ACL.

[99]  Richard Power,et al.  Multilingual generation of controlled languages , 2003, EAMT.

[100]  Yifan He,et al.  Consistent Translation using Discriminative Learning - A Translation Memory-inspired Approach , 2011, ACL.

[101]  Roxana Gîrju,et al.  Automatic Detection of Causal Relations for Question Answering , 2003, ACL 2003.

[102]  Hermann Ney,et al.  Discriminative Training and Maximum Entropy Models for Statistical Machine Translation , 2002, ACL.

[103]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[104]  Sanjeev Khudanpur,et al.  Unsupervised Discriminative Language Model Training for Machine Translation using Simulated Confusion Sets , 2010, COLING.

[105]  Francis Bond,et al.  Building and Annotating the Linguistically Diverse NTU-MC (NTU-Multilingual Corpus) , 2011, PACLIC.

[106]  Véronique Hoste,et al.  Language-Independent Bilingual Terminology Extraction from a Multilingual Parallel Corpus , 2009, EACL.

[107]  Marco Marelli,et al.  A SICK cure for the evaluation of compositional distributional semantic models , 2014, LREC.

[108]  Marta R. Costa-jussà,et al.  Statistical Machine Reordering , 2006, EMNLP.

[109]  Philip Koehn,et al.  Statistical Machine Translation , 2010, EAMT.

[110]  Khalil Sima'an,et al.  Latent Domain Phrase-based Models for Adaptation , 2014, EMNLP.

[111]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[112]  Liling Tan,et al.  USAAR-CHRONOS: Crawling the Web for Temporal Annotations , 2015, *SEMEVAL.

[113]  James L. McClelland,et al.  Learning hierarchical category structure in deep neural networks , 2013 .

[114]  Jeff A. Bilmes,et al.  Submodularity for Data Selection in Machine Translation , 2014, EMNLP.

[115]  Lucia Specia,et al.  Cross-lingual Sentence Compression for Subtitles , 2012, EAMT.

[116]  Adam Pease,et al.  The Suggested Upper Merged Ontology: A Large Ontology for the Semantic Web and its Applic ations , 2002 .

[117]  Sharon A. Caraballo Automatic construction of a hypernym-labeled noun hierarchy from text , 1999, ACL.

[118]  Dekai Wu,et al.  Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora , 1997, CL.

[119]  Ben Taskar,et al.  Alignment by Agreement , 2006, NAACL.

[120]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[121]  Matthew G. Snover,et al.  TERp System Description , 2008 .

[122]  Kyo Kageura,et al.  METHODS OF AUTOMATIC TERM RECOGNITION : A REVIEW , 1996 .

[123]  Stefano Faralli,et al.  OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction , 2013, CL.

[124]  Khalil Sima'an,et al.  Latent Domain Word Alignment for Heterogeneous Corpora , 2015, NAACL.

[125]  Paula Estrella,et al.  Semantic Textual Similarity for MT evaluation , 2012, WMT@NAACL-HLT.

[126]  Harold L. Somers,et al.  Round-trip Translation: What Is It Good For? , 2005, ALTA.

[127]  Qun Liu,et al.  A novel dependency-to-string model for statistical machine translation , 2011, EMNLP.

[128]  Hervé Blanchon,et al.  Collection of a Large Database of French-English SMT Output Corrections , 2012, LREC.

[129]  Joakim Nivre,et al.  Pseudo-Projective Dependency Parsing , 2005, ACL.

[130]  Wanxiang Che,et al.  Learning Semantic Hierarchies via Word Embeddings , 2014, ACL.

[131]  Philipp Koehn,et al.  Improved Statistical Machine Translation Using Paraphrases , 2006, NAACL.

[132]  M. Marelli,et al.  SemEval-2014 Task 1: Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment , 2014, *SEMEVAL.

[133]  Chris Quirk,et al.  Dependency treelet translation: the convergence of statistical and example-based machine-translation? , 2006, MTSUMMIT.

[134]  Jörg Tiedemann,et al.  Document-Wide Decoding for Phrase-Based Statistical Machine Translation , 2012, EMNLP.

[135]  Daniel Zeman,et al.  HamleDT: To Parse or Not to Parse? , 2012, LREC.

[136]  Eugene Charniak,et al.  Finding Parts in Very Large Corpora , 1999, ACL.

[137]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[138]  Patrick Hanks,et al.  Lexical Analysis: Norms and Exploitations , 2013 .

[139]  Andy Way,et al.  Web Service Integration for Next Generation Localisation , 2009 .

[140]  Josef van Genabith,et al.  Searching for Context: a Study on Document-Level Labels for Translation Quality Estimation , 2015, EAMT.

[141]  Mei-Yuh Hwang,et al.  Incremental Training and Intentional Over-fitting of Word Alignment , 2011 .

[142]  Qin Gao,et al.  Consensus versus expertise: a case study of word alignment with Mechanical Turk , 2010, HLT-NAACL 2010.

[143]  Alon Lavie,et al.  The Meteor metric for automatic evaluation of machine translation , 2009, Machine Translation.

[144]  Rohit Gupta,et al.  MiniExperts: An SVM Approach for Measuring Semantic Textual Similarity , 2015, *SEMEVAL.

[145]  A. Waibel,et al.  Analyzing the potential of source sentence reordering in statistical machine translation , 2013, IWSLT.

[146]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[147]  Alexander M. Fraser,et al.  A Smorgasbord of Features for Statistical Machine Translation , 2004, NAACL.

[148]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.

[149]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[150]  Michael Gamon,et al.  Correcting ESL Errors Using Phrasal SMT Techniques , 2006, ACL.

[151]  Alon Lavie,et al.  Meteor 1.3: Automatic Metric for Reliable Optimization and Evaluation of Machine Translation Systems , 2011, WMT@EMNLP.

[152]  Martin Wainwright,et al.  Learning in graphical models: Missing data and rigorous guarantees with non-convexity , 2011 .

[153]  Slav Petrov,et al.  Source-Side Classifier Preordering for Machine Translation , 2013, EMNLP.

[154]  J. Jenkins,et al.  Word association norms , 1964 .

[155]  Lucia Specia,et al.  Exploring Consensus in Machine Translation for Quality Estimation , 2014, WMT@ACL.

[156]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[157]  T. Mitamura Controlled language for multilingual machine translation , 1999, MTSUMMIT.

[158]  Ben Taskar,et al.  Learning Tractable Word Alignment Models with Complex Constraints , 2010, CL.

[159]  Noah A. Smith,et al.  Quasi-Synchronous Phrase Dependency Grammars for Machine Translation , 2011, EMNLP.

[160]  Junyi Jessy Li,et al.  Assessing the Discourse Factors that Influence the Quality of Machine Translation , 2014, ACL.

[161]  Nitin Madnani,et al.  Fluency, Adequacy, or HTER? Exploring Different Human Judgments with a Tunable MT Metric , 2009, WMT@EACL.

[162]  Zheng Yuan,et al.  Generating artificial errors for grammatical error correction , 2014, EACL.

[163]  Hugo Gonçalo Oliveira,et al.  Using the Web to Validate Lexico-Semantic Relations , 2011, EPIA.

[164]  Chris Callison-Burch,et al.  PPDB: The Paraphrase Database , 2013, NAACL.

[165]  Shachar Mirkin,et al.  SORT: An Interactive Source-Rewriting Tool for Improved Translation , 2013, ACL.

[166]  Lluís Màrquez i Villodre,et al.  Linguistic Features for Automatic Evaluation of Heterogenous MT Systems , 2007, WMT@ACL.

[167]  Dekai Wu,et al.  MEANT: An inexpensive, high-accuracy, semi-automatic metric for evaluating translation utility based on semantic roles , 2011, ACL.

[168]  Michael Halliday,et al.  Cohesion in English , 1976 .

[169]  Eric P. Xing,et al.  Concise Integer Linear Programming Formulations for Dependency Parsing , 2009, ACL.

[170]  Philipp Koehn,et al.  Findings of the 2013 Workshop on Statistical Machine Translation , 2013, WMT@ACL.

[171]  S. Khudanpur,et al.  Large-scale Discriminative n-gram Language Models for Statistical Machine Translation , 2008, AMTA.

[172]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[173]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[174]  Christopher D. Manning,et al.  Optimizing Chinese Word Segmentation for Machine Translation Performance , 2008, WMT@ACL.

[175]  Philipp Koehn,et al.  Clause Restructuring for Statistical Machine Translation , 2005, ACL.

[176]  Yifan He,et al.  Bridging SMT and TM with Translation Recommendation , 2010, ACL.

[177]  Pablo N. Mendes,et al.  Improving efficiency and accuracy in multilingual entity extraction , 2013, I-SEMANTICS '13.

[178]  Rico Sennrich,et al.  A Multi-Domain Translation Model Framework for Statistical Machine Translation , 2013, ACL.

[179]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[180]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[181]  Petr Sojka,et al.  Software Framework for Topic Modelling with Large Corpora , 2010 .

[182]  Association for Machine Translation and Computational Linguistics, August 1963 - First annual meeting, photograph of participants , 1964, Mech. Transl. Comput. Linguistics.

[183]  Ben Taskar,et al.  Posterior Regularization for Structured Latent Variable Models , 2010, J. Mach. Learn. Res..

[184]  Alon Lavie,et al.  Better Hypothesis Testing for Statistical Machine Translation: Controlling for Optimizer Instability , 2011, ACL.

[185]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[186]  Benjamin Lecouteux,et al.  LIG System for Word Level QE task at WMT14 , 2014, WMT@ACL.

[187]  Michaela Regneri,et al.  SeedLing: Building and Using a Seed corpus for the Human Language Project , 2014 .

[188]  Matthew G. Snover,et al.  A Study of Translation Edit Rate with Targeted Human Annotation , 2006, AMTA.

[189]  Lucia Specia,et al.  Document-level translation quality estimation: exploring discourse and pseudo-references , 2014, EAMT.

[190]  Marine Carpuat,et al.  Linear Mixture Models for Robust Machine Translation , 2014, WMT@ACL.

[191]  Daniel Khashabi,et al.  On the Recursive Neural Networks for Relation Extraction and Entity Recognition , 2013 .

[192]  Alex Kulesza,et al.  Confidence Estimation for Machine Translation , 2004, COLING.

[193]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[194]  Khalil Sima'an,et al.  Statistical Translation After Source Reordering: Oracles, Context-Aware Models, and Empirical Analysis , 2011, Natural Language Engineering.

[195]  Kevin Duh,et al.  Factored Language Models Tutorial , 2007 .

[196]  Hernani Costa,et al.  iCompileCorpora: a web-based application to semi-automatically compile multilingual comparable corpora , 2014, TC.

[197]  Taro Watanabe,et al.  Recurrent Neural Networks for Word Alignment Model , 2014, ACL.

[198]  Michael Collins,et al.  A Convex Alternative to IBM Model 2 , 2013, EMNLP.

[199]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[200]  Arthur C. Graesser,et al.  Coh-Metrix: Analysis of text on cohesion and language , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[201]  Josef van Genabith,et al.  USAAR-WLV: Hypernym Generation with Deep Neural Nets , 2015, *SEMEVAL.

[202]  Jeffrey Heer,et al.  Human Effort and Machine Learnability in Computer Aided Translation , 2014, EMNLP.

[203]  Preslav Nakov,et al.  Using Discourse Structure Improves Machine Translation Evaluation , 2014, ACL.

[204]  Philipp Koehn,et al.  Convergence of Translation Memory and Statistical Machine Translation , 2010, JEC.

[205]  Jinxi Xu,et al.  String-to-Dependency Statistical Machine Translation , 2010, CL.

[206]  Brian Roark,et al.  Discriminative Syntactic Language Modeling for Speech Recognition , 2005, ACL.

[207]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[208]  Stephan Vogel,et al.  A Semi-Supervised Word Alignment Algorithm with Partial Manual Alignments , 2010, WMT@ACL.