Piezoelectricity and pyroelectricity in polymers

Piezoelectric activities of polymers arise from poling-induced orientation of dipoles (class 1) and uniaxial orientation of chiral molecules (class 2). The former accompanies pyroelectricity while the latter produces pyroelectricity if the spontaneous shear strain is incorporated. Strong activities have been found in class 1, namely, ferroelectric polymers, polar polymers having large dielectric relaxations, and composites containing a large amount of PZT. Poling conditions, factors that determine piezoelectric and pyroelectric activities, and their basic mechanisms are discussed.<<ETX>>

[1]  H. Ohigashi,et al.  Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers , 1986 .

[2]  P. Taylor,et al.  Field sums for extended dipoles in ferroelectric polymers , 1985 .

[3]  T. Furukawa,et al.  Investigation of Switching Characteristics of Vinylidene Fluoride/Trifluoroethylene Copolymers in Relation to Their Structures , 1987 .

[4]  E. Fukada,et al.  Piezoelectric properties in the composite systems of polymers and PZT ceramics , 1979 .

[5]  J. Scheinbeim,et al.  Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon‐11 films , 1984 .

[6]  G. Johnson,et al.  Measurements of ferroelectric switching characteristics in polyvinylidene fluoride , 1981 .

[7]  Eiichi Fukada,et al.  Piezoelectricity of Wood , 1955 .

[8]  S. Miyata,et al.  Piezoelectricity and remanent polarization in vinylidene cyanide/vinyl acetate copolymer , 1984 .

[9]  Yoshiyuki Takahashi,et al.  Direct evidence for ferroelectric switching in poly(vinylidene fluoride) and poly(vinylidene fluoride‐trifluoroethylene) crystals , 1987 .

[10]  A. Chiba,et al.  Calculation of the equilibrium polarization of vinylidene fluoride-trifluoroethylene copolymers using the iteration method , 1987 .

[11]  E. Fukada,et al.  Piezoelectric relaxation in poly(γ‐benzyl‐glutamate) , 1976 .

[12]  G. R. Crane,et al.  Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films , 1971 .

[13]  E. W. Jacobs,et al.  Correlation of ferroelectric hysteresis with 33 ferroelastic hysteresis in polyvinylidene fluoride , 1984 .

[14]  Yasaku Wada,et al.  Piezoelectricity and Pyroelectricity of Polymers , 1976 .

[15]  T. Sluckin,et al.  Theory of reversible crystallization and electric effects in PVF2 , 1981 .

[16]  A. J. Lovinger,et al.  Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples , 1983 .

[17]  R. E. Collins,et al.  Piezoelectricity and pyroelectricity in polyvinylidene fluoride—A model , 1978 .

[18]  I. Seo,et al.  Large Dielectric Relaxations in an Alternate Copolymer of Vinylidene Cyanide and Vinyl Acetate , 1986 .

[19]  E. Fukada,et al.  Calculation of Elastic and Piezoelectric Constants of Polymer Crystals by a Point Charge Model: Application to Poly(vinylidene fluoride) Form I , 1980 .

[20]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[21]  Takeo Furukawa,et al.  Switching process in composite systems of PZT ceramics and polymers , 1986 .

[22]  T. Furukawa,et al.  Electrostriction and Piezoelectricity in Ferroelectric Polymers , 1984 .

[23]  K. Suzuki,et al.  Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers , 1984 .

[24]  R. Anderson,et al.  Pyroelectricity and the electric field dependence of crystallinity in polyvinylidene fluoride , 1984 .

[25]  J. Pérez,et al.  Influence de la déformation plastique sur les propriétés ultrasonores de la glace Ih , 1975 .

[26]  Leslie E. Cross,et al.  Flexible composite transducers , 1978 .

[27]  Y. Wada Theoretical analysis of temperature dependence of complex piezoelectric constant and pyroelectric constant of poly(vinylidene fluoride) , 1984 .