Universal codomains to Represent Interval Orders
暂无分享,去创建一个
JUAN CARLOS CANDEAL | JAVIER GUTIÉRREZ GARCÍA | ESTEBAN INDURÁIN | Javier Gutiérrez García | E. Induráin | J. Candeal | Juan Carlos Candeal
[1] P. Hammond,et al. Handbook of Utility Theory , 2004 .
[2] P. Swistak. Some representation problems for semiorders , 1980 .
[3] A. Chateauneuf. Continuous representation of a preference relation on a connected topological space , 1987 .
[4] H. J. Skala. Nonstandard utilities and the foundation of game theory , 1974 .
[5] D. Bouyssou,et al. Utility Maximization, Choice and Preference , 2002 .
[6] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[7] Michael Pinedo,et al. Planning and Scheduling in Manufacturing and Services , 2008 .
[8] Peter C. Fishburn,et al. Interval graphs and interval orders , 1985, Discret. Math..
[9] P. Fishburn. Intransitive indifference with unequal indifference intervals , 1970 .
[10] R. Luce. Semiorders and a Theory of Utility Discrimination , 1956 .
[11] Juan Carlos Candeal,et al. Interval-Valued Representability of Qualitative Data: the Continuous Case , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[12] Yakar Kannai,et al. Non-standard concave utility functions , 1992 .
[13] I. Gilboa,et al. Numerical representations of imperfectly ordered preferences (a unified geometric exposition) , 1992 .
[14] V. Novák. Fuzzy sets and their applications , 1989 .
[15] E. Induráin,et al. Continuous representability of interval orders , 2004 .
[16] W. E. Armstrong. A NOTE ON TUE THEORY OF CONSUMER'S BEHAVIOUR , 1950 .
[17] Juan Carlos Candeal,et al. Numerical representability of semiorders , 2002, Math. Soc. Sci..
[18] D. Dubois,et al. Operations on fuzzy numbers , 1978 .
[19] Juan Carlos Candeal,et al. Lexicographic behaviour of chains , 1999 .
[20] E. Induráin,et al. Representability of Interval Orders , 1998 .
[21] G. Mehta. Preference and utility , 1998 .
[22] Gerhard Herden,et al. The Debreu Gap Lemma and some generalizations , 2004 .
[23] K M Eriksson. Book Review: Planning and Scheduling in Manufacturing and Services. Michael L. Pinedo, Springer-Verlag, £46.00 (ISBN 0 387 22198 0): , 2005 .
[24] T. William,et al. Surveys in Combinatorics, 1997: New Perspectives on Interval Orders and Interval Graphs , 1997 .
[25] A. Tversky. Intransitivity of preferences. , 1969 .
[26] Juan Carlos Candeal,et al. Representability of binary relations through fuzzy numbers , 2006, Fuzzy Sets Syst..
[27] D. Bridges,et al. Representations of Preferences Orderings , 1995 .
[28] J. Chipman. The Foundations of Utility , 1960 .
[29] A. Kaufmann,et al. Introduction to fuzzy arithmetic : theory and applications , 1986 .
[30] Juan Carlos Candeal,et al. Numerical Representations of Interval Orders , 2001, Order.
[31] Kenneth L. Manders. On jnd representations of semiorders , 1981 .
[32] D. Bridges. Numerical representation of intransitive preferences on a countable set , 1983 .
[33] Peter C. Fishburn,et al. LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES: A SURVEY , 1974 .
[34] Patrick Suppes,et al. Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.
[35] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[36] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[37] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[38] Jean-Paul Doignon,et al. On realizable biorders and the biorder dimension of a relation , 1984 .
[39] G. Bosi,et al. Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .
[40] Didier Dubois,et al. Fuzzy sets and their applications: Vilem Novak, translated from Czechoslovakian. Bristol and Philadelphia: Adam Hilger, 1989, 248 pages. , 1991 .