Multi-scale score level fusion of local descriptors for gender classification in the wild

The 2015 FRVT gender classification (GC) report evidences the problems that current approaches tackle in situations with large variations in pose, illumination, background and facial expression. The report suggests that both commercial and research solutions are hardly able to reach an accuracy over 90 % for The Images of Groups dataset, a proven scenario exhibiting unrestricted or in the wild conditions. In this paper, we focus on this challenging dataset, stepping forward in GC performance by observing: 1) recent literature results combining multiple local descriptors, and 2) the psychophysics evidences of the greater importance of the ocular and mouth areas to solve this task. We therefore make use of holistic and inner facial patches to extract features, that are later combined via a score level fusion strategy. The achieved results support the main information provided by the ocular and the mouth areas. Indeed, the combination of multiscale extracted features increases the overall accuracy to over 94 %, reducing notoriously the classification error if compared with tuned holistic and deep learning approaches.

[1]  Thomas B. Moeslund,et al.  On soft biometrics , 2015, Pattern Recognit. Lett..

[2]  Javier Lorenzo-Navarro,et al.  Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild , 2017, Image Vis. Comput..

[3]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[4]  Andrew C. Gallagher,et al.  Understanding images of groups of people , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Shree K. Nayar,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Describable Visual Attributes for Face Verification and Image Search , 2022 .

[7]  Shumeet Baluja,et al.  Boosting Sex Identification Performance , 2005, International Journal of Computer Vision.

[8]  Mahir Faik Karaaba,et al.  Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[9]  Thomas Serre,et al.  A Component-based Framework for Face Detection and Identification , 2007, International Journal of Computer Vision.

[10]  Laura Fernández-Robles,et al.  Local Oriented Statistics Information Booster (LOSIB) for Texture Classification , 2014, 2014 22nd International Conference on Pattern Recognition.

[11]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[12]  José Miguel Buenaposada,et al.  Robust gender recognition by exploiting facial attributes dependencies , 2014, Pattern Recognit. Lett..

[13]  Nello Cristianini,et al.  Learning to classify gender from four million images , 2015, Pattern Recognit. Lett..

[14]  José Miguel Buenaposada,et al.  Revisiting Linear Discriminant Techniques in Gender Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Javier Lorenzo-Navarro,et al.  Improving Gender Classification Accuracy in the Wild , 2013, CIARP.

[16]  Javier Lorenzo-Navarro,et al.  On using periocular biometric for gender classification in the wild , 2016, Pattern Recognit. Lett..

[17]  Anil K. Jain,et al.  Biometrics of Next Generation: An Overview , 2010 .

[18]  Daniel González-Jiménez,et al.  Single- and cross- database benchmarks for gender classification under unconstrained settings , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[19]  Javier Lorenzo-Navarro,et al.  Fusion of Holistic and Part Based Features for Gender Classification in the Wild , 2015, ICIAP Workshops.

[20]  Daijin Kim,et al.  Robust face detection using local gradient patterns and evidence accumulation , 2012, Pattern Recognit..

[21]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Maher Awad,et al.  Age and gender recognition using informative features of various types , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[23]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  Patrick J. Grother,et al.  Face Recognition Vendor Test (FRVT) - Performance of Automated Gender Classification Algorithms , 2015 .

[25]  Jean-Luc Dugelay,et al.  Minimalistic CNN-based ensemble model for gender prediction from face images , 2016, Pattern Recognit. Lett..

[26]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[27]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[28]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[29]  Anil K. Jain,et al.  Age , Gender and Race Estimation from Unconstrained Face Images , 2014 .

[30]  Frédéric Gosselin,et al.  Bubbles: a technique to reveal the use of information in recognition tasks , 2001, Vision Research.

[31]  Roberto Paredes,et al.  Local Deep Neural Networks for gender recognition , 2016, Pattern Recognit. Lett..

[32]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[33]  Sébastien Marcel,et al.  Within- and cross- database evaluations for face gender classification via befit protocols , 2014, 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP).

[34]  Luís A. Alexandre Gender recognition: A multiscale decision fusion approach , 2010, Pattern Recognit. Lett..

[35]  Bruce A. Draper,et al.  On the effectiveness of soft biometrics for increasing face verification rates , 2015, Comput. Vis. Image Underst..

[36]  Ze-Nian Li,et al.  Gender Recognition Using Complexity-Aware Local Features , 2014, 2014 22nd International Conference on Pattern Recognition.

[37]  Claudio A. Perez,et al.  Gender Classification Based on Fusion of Different Spatial Scale Features Selected by Mutual Information From Histogram of LBP, Intensity, and Shape , 2013, IEEE Transactions on Information Forensics and Security.

[38]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[40]  Urbano Nunes,et al.  Trainable classifier-fusion schemes: An application to pedestrian detection , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[41]  Anil K. Jain,et al.  Biometric Recognition : An Overview , 2012 .

[42]  Tal Hassner,et al.  Age and gender classification using convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[43]  Tsuhan Chen,et al.  Understanding images of groups of people , 2009, CVPR.

[44]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[45]  Anil K. Jain,et al.  Soft Biometric Traits for Personal Recognition Systems , 2004, ICBA.

[46]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[47]  Huizhong Chen,et al.  The Hidden Sides of Names—Face Modeling with First Name Attributes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Michele Nappi,et al.  MEG: Multi-Expert Gender Classification from Face Images in a Demographics-Balanced Dataset , 2015, ICIAP.

[49]  Sébastien Marcel,et al.  Audio-visual gender recognition in uncontrolled environment using variability modeling techniques , 2014, IEEE International Joint Conference on Biometrics.

[50]  Caifeng Shan,et al.  Learning local binary patterns for gender classification on real-world face images , 2012, Pattern Recognit. Lett..

[51]  Shay B. Cohen,et al.  Advances in Neural Information Processing Systems 25 , 2012, NIPS 2012.

[52]  Tieniu Tan,et al.  Local salient patterns — A novel local descriptor for face recognition , 2013, 2013 International Conference on Biometrics (ICB).