Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus

[1]  J. Linnanto,et al.  Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates , 2008, Photosynthesis Research.

[2]  G. Oostergetel,et al.  Long‐range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo‐electron microscopy , 2007, FEBS letters.

[3]  H. Tamiaki,et al.  Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. , 2006, Journal of bioscience and bioengineering.

[4]  Robert Eugene Blankenship,et al.  The Ultrastructure of Chlorobium tepidum Chlorosomes Revealed by Electron Microscopy , 2005, Photosynthesis Research.

[5]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[6]  N. Isaacs,et al.  Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris , 2003, Science.

[7]  A. Holzwarth,et al.  Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. , 2003, Biophysical journal.

[8]  V. Pizziconi,et al.  Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. , 2003, Biophysical journal.

[9]  Robert Eugene Blankenship,et al.  Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. , 2003, Biochemistry.

[10]  T. Gillbro,et al.  Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. , 2003, Biophysical journal.

[11]  J. Linnanto,et al.  Theoretical study of excitation transfer from modified B800 rings of the LH II antenna complex of Rps. acidophila , 2002 .

[12]  A. Holzwarth,et al.  Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. , 2000, Biophysical journal.

[13]  J. Linnanto,et al.  Excitation Energy-Transfer in the LH2 Antenna of Photosynthetic Purple Bacteria via Excitonic B800 and B850 States , 2000 .

[14]  J. Olson Chlorophyll Organization and Function in Green Photosynthetic Bacteria * , 1998 .

[15]  J. Oelze,et al.  Phototrophic growth and chlorosome formation in Chloroflexus aurantiacus under conditions of carotenoid deficiency , 1997, Photosynthesis Research.

[16]  C. Francke,et al.  Isolation and pigment composition of the antenna system of four species of green sulfur bacteria , 1997, Photosynthesis Research.

[17]  J. Kennis,et al.  Femtosecond Dynamics in Isolated LH2 Complexes of Various Species of Purple Bacteria , 1997 .

[18]  Robert Eugene Blankenship,et al.  Intraband Energy Transfers in the BChl c Antenna of Chlorosomes from the Green Photosynthetic Bacterium Chloroflexus aurantiacus , 1996 .

[19]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[20]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[21]  A. Freiberg,et al.  Antenna size dependent exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus , 1996, FEBS letters.

[22]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. , 1996, The Journal of physical chemistry.

[23]  V. Sundström,et al.  Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. , 1995, Biophysical journal.

[24]  M. Mimuro,et al.  SPECTRAL FORMS AND ORIENTATION OF BACTERIOCHLOROPHYLLS c AND α IN CHLOROSOMES OF THE GREEN PHOTOSYNTHETIC BACTERIUM Chloroflexus aurantiacus , 1993 .

[25]  T. G. Owens,et al.  Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. , 1991, Biochimica et biophysica acta.

[26]  T. Gillbro,et al.  Energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus: studies using picosecond absorbance spectroscopy , 1991 .

[27]  Robert Eugene Blankenship,et al.  Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria , 1990, Photosynthesis Research.

[28]  K. Griebenow,et al.  Picosecond energy transfer kinetics between pigment pools in different preparations of chlorosomes from the green bacterium Chloroflexus aurantiacus Ok-70-fl , 1990 .

[29]  L. Staehelin,et al.  Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus , 1978, Archives of Microbiology.

[30]  C. Borrego,et al.  Determination of the topography and biometry of chlorosomes by atomic force microscopy , 2004, Photosynthesis Research.