Testing Homotopy for Paths in the Plane

In this paper we present an efficient algorithm to test if two given paths are homotopic; that is, whether they wind around obstacles in the plane in the same way. For simple paths specified by n line segments with obstacles described by n points, our algorithm runs in O(n log n) time, which we show is tight. For self-intersecting paths the problem is related to Hopcroft's problem.

[1]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[2]  B. Buttenfield TREATMENT OF THE CARTOGRAPHIC LINE , 1985 .

[3]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2002, Comput. Geom..

[4]  Jeff Erickson,et al.  New lower bounds for Hopcroft's problem , 1995, SCG '95.

[5]  Leonidas J. Guibas,et al.  Implicitly representing arrangements of lines or segments , 2011, SCG '88.

[6]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[7]  Kurt Mehlhorn,et al.  On continuous Homotopic one layer routing , 1988, SCG '88.

[8]  Sergei N. Bespamyatnikh Computing homotopic shortest paths in the plane , 2003, SODA '03.

[9]  F. Miller Maley Single-layer wire routing and compaction , 1989, Foundations of computing.

[10]  Michael T. Goodrich,et al.  Dynamic Ray Shooting and Shortest Paths in Planar Subdivisions via Balanced Geodesic Triangulations , 1997, J. Algorithms.

[11]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[12]  F. Miller Malley,et al.  Single-Layer Wire Routing and Compaction , 1989 .

[13]  Jirí Matousek,et al.  Efficient partition trees , 1992, Discret. Comput. Geom..

[14]  A. Blumberg BASIC TOPOLOGY , 2002 .

[15]  Jirí Matousek,et al.  Spanning trees with low crossing number , 1991, RAIRO Theor. Informatics Appl..

[16]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[17]  Mark de Berg,et al.  Cuttings and applications , 1995, Int. J. Comput. Geom. Appl..

[18]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[19]  Robert E. Tarjan,et al.  Making Data Structures Persistent , 1989, J. Comput. Syst. Sci..

[20]  James R. Munkres,et al.  Topology; a first course , 1974 .

[21]  Tamal K. Dey,et al.  Transforming Curves on Surfaces , 1999, J. Comput. Syst. Sci..

[22]  Stefan Schirra,et al.  A new approach to subdivision simplification , 1995 .

[23]  Jack Snoeyink,et al.  Counting and Reporting Red/Blue Segment Intersections , 1993, WADS.

[24]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[25]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[26]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.