Modeling Diffuse Seismicity in Probabilistic Seismic Hazard Analysis: Treatment of Virtual Faults

There is no scientific consensus on how finite virtual faults should be modeled in the probabilistic seismic hazard analysis of diffuse seismicity. Often pragmatic implementation decisions are made as a matter of convenience or computational efficiency. To better understand how differences in modeling virtual faults impact seismic hazard, we evaluated several methods of modeling such faults. For our preferred model, we test the sensitivity of the hazard to differences in fault discretization density, number of random azimuths, and cutoff distance. We propose a new computationally efficient method of modeling the random orientation of virtual faults by holding the fault plane fixed in space and rotating a virtual site around the source grid point. We show that there can be relatively large differences in seismic hazard, depending on how virtual faults are modeled, and provide guidance on how virtual-fault parameters should be selected in order to achieve a specified degree of accuracy.

[1]  R. Mcguire Seismic Hazard and Risk Analysis , 2004 .

[2]  I. M. Idriss An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes , 2014 .

[3]  G. Weatherill,et al.  OpenQuake Engine: An Open Hazard (and Risk) Software for the Global Earthquake Model , 2014 .

[4]  Norman A. Abrahamson,et al.  Summary of the ASK14 Ground Motion Relation for Active Crustal Regions , 2014 .

[5]  Julian J. Bommer,et al.  Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA , 2012 .

[6]  Robert R. Youngs,et al.  Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra , 2014 .

[7]  Charles S. Mueller,et al.  Seismic Source Characterization for the 2014 Update of the U.S. National Seismic Hazard Model , 2015 .

[8]  Linda Al Atik,et al.  Epistemic Uncertainty for NGA-West2 Models: , 2014 .

[9]  Charles S. Mueller,et al.  Documentation for the 2008 update of the United States National Seismic Hazard Maps , 2008 .

[10]  T. Jordan,et al.  OpenSHA: A Developing Community-modeling Environment for Seismic Hazard Analysis , 2003 .

[11]  Anna H. Olsen,et al.  The 2014 United States National Seismic Hazard Model , 2015 .

[12]  Damiano Monelli,et al.  Modeling Distributed Seismicity for Probabilistic Seismic‐Hazard Analysis: Implementation and Insights with the OpenQuake Engine , 2014 .

[13]  F. Scherbaum,et al.  On the Conversion of Source-to-Site Distance Measures for Extended Earthquake Source Models , 2004 .

[14]  Jonathan P. Stewart,et al.  NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes , 2014 .

[15]  J. A. Steers,et al.  An Introduction to the Study of Map Projections , 1930, Nature.

[16]  Peter M. Powers,et al.  2014 Update to the National Seismic Hazard Model in California , 2015 .

[17]  D. Wells,et al.  New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement , 1994, Bulletin of the Seismological Society of America.

[18]  Ggk Engineering Mathematics Handbook , 1971 .

[19]  T. Sitharam,et al.  Seismic Hazard Analysis , 2018 .

[20]  I. Gupta Source-to-site distance distributions for area type of seismic sources used in PSHA applications , 2013, Natural Hazards.

[21]  K. Campbell,et al.  NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra , 2014 .

[22]  B. E. Shaw,et al.  Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model , 2014 .

[23]  John P. Snyder,et al.  Map Projections: A Working Manual , 2012 .

[24]  Timothy E. Dawson,et al.  Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) , 2009 .

[25]  A. Hinckley,et al.  An Introduction to the Study of Map Projection , 1949 .

[26]  N. Abrahamson,et al.  Composite Ground-Motion Models and Logic Trees: Methodology, Sensitivities, and Uncertainties , 2005 .