Adaptive kernel estimation and SPH tensile instability

We propose an alternative method to remove the tensile instability in standard SPH simulations of a fluid. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in such a way that only the minimum necessary smoothing is applied to the data. By means of a linear perturbation analysis of the SPH equations for a heat-conducting, viscous, van der Waals fluid, we derive the corresponding dispersion relation. Solution of the dispersion relation in the short wavelength limit shows that the tensile instability is effectively removed for a wide range of the ADKE parameters. Application of the method to the formation of equilibrium liquid drops confirms the analytical results of the linear stability analysis. Examples of the resolving power of the method are also given for the nonlinear oscillations of an excited drop and the Sedov blast wave problem.

[1]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[2]  Mikhail Shashkov,et al.  A Composite Scheme for Gas Dynamics in Lagrangian Coordinates , 1999 .

[3]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[4]  H. Posch,et al.  Liquid drops and surface tension with smoothed particle applied mechanics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[6]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[7]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[8]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[9]  I. Schuessler,et al.  Comments on smoothed particle hydrodynamics , 1981 .

[10]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[11]  J. Monaghan SPH without a Tensile Instability , 2000 .

[12]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[13]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[14]  Sivakumar Kulasegaram,et al.  Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods , 2001 .

[15]  Leonardo Di G. Sigalotti,et al.  A shock-capturing SPH scheme based on adaptive kernel estimation , 2006, J. Comput. Phys..

[16]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[17]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[18]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[19]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[20]  L. D. Libersky,et al.  Boundary conditions in a meshless staggered particle code , 1998 .

[21]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[22]  E. M. Lifshitz,et al.  Statistical physics. Pt.1 , 1969 .

[23]  A. Evrard Beyond N-body: 3D cosmological gas dynamics , 1988 .

[24]  J. K. Chen,et al.  An improvement for tensile instability in smoothed particle hydrodynamics , 1999 .

[25]  Wm G Hoover,et al.  Smooth-particle applied mechanics: Conservation of angular momentum with tensile stability and velocity averaging. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Marianne Gjestvold Omang,et al.  SPH in spherical and cylindrical coordinates , 2006, J. Comput. Phys..

[27]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[28]  Leonardo Di G. Sigalotti,et al.  On the SPH tensile instability in forming viscous liquid drops , 2004 .

[29]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .

[30]  J. Monaghan,et al.  Binary fission in damped rotating polytropes , 1978 .