Applications of DNA microarrays to the transcriptional analysis of mammalian genomes

[1]  M. Soares,et al.  Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. , 2000, Human molecular genetics.

[2]  N. Socci,et al.  Leptin-specific patterns of gene expression in white adipose tissue. , 2000, Genes & development.

[3]  G. Church,et al.  Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx , 2000, Current Biology.

[4]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[5]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[6]  Graham Cameron,et al.  One-stop shop for microarray data , 2000, Nature.

[7]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[8]  C. Müller,et al.  Large-scale clustering of cDNA-fingerprinting data. , 1999, Genome research.

[9]  Patrick O. Brown,et al.  Observing the living genome , 1999, Nature Genetics.

[10]  Michael L. Bittner,et al.  cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene , 1999, Nature Genetics.

[11]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[12]  J. Trent,et al.  Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays , 1999 .

[13]  C. K. Lee,et al.  Gene expression profile of aging and its retardation by caloric restriction. , 1999, Science.

[14]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[16]  Andrius Kazlauskas,et al.  Diverse Signaling Pathways Activated by Growth Factor Receptors Induce Broadly Overlapping, Rather Than Independent, Sets of Genes , 1999, Cell.

[17]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Christians,et al.  Induction of GADD45 and JNK/SAPK-Dependent Apoptosis following Inducible Expression of BRCA1 , 1999, Cell.

[19]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[20]  L. Hood,et al.  Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. , 1999, Gene.

[21]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  W. Blackstock,et al.  Proteomics: quantitative and physical mapping of cellular proteins. , 1999, Trends in biotechnology.

[23]  J. Trent,et al.  Microarrays and toxicology: The advent of toxicogenomics , 1999, Molecular carcinogenesis.

[24]  M. Jackson,et al.  Gene expression profiles of laser-captured adjacent neuronal subtypes , 1999, Nature Medicine.

[25]  M Schena,et al.  Fluorescence-based expression monitoring using microarrays. , 1999, Methods in enzymology.

[26]  D. Botstein,et al.  Exploring the new world of the genome with DNA microarrays , 1999, Nature Genetics.

[27]  James Scott,et al.  Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats , 1999, Nature Genetics.

[28]  P. Brown,et al.  DNA arrays for analysis of gene expression. , 1999, Methods in enzymology.

[29]  D. Botstein,et al.  The transcriptional program in the response of human fibroblasts to serum. , 1999, Science.

[30]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Bedilion,et al.  The integration of microarray information in the drug development process. , 1998, Current opinion in biotechnology.

[32]  S H Kim,et al.  Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. , 1998, Science.

[33]  J. Winkles,et al.  Serum- and polypeptide growth factor-inducible gene expression in mouse fibroblasts. , 1998, Progress in nucleic acid research and molecular biology.

[34]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[35]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[36]  M. Soares,et al.  Normalization and subtraction: two approaches to facilitate gene discovery. , 1996, Genome research.

[37]  V. van Heyningen,et al.  Transcription factors in disease. , 1996, Current opinion in genetics & development.

[38]  J. Eberwine,et al.  Amplification of mRNA populations using aRNA generated from immobilized oligo(dT)-T7 primed cDNA. , 1996, BioTechniques.

[39]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.