Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata

Reconciling competing desires to build urban models that can be simple and complicated is something of a grand challenge for urban simulation. It also prompts difficulties in many urban policy situations, such as urban sprawl, where simple, actionable ideas may need to be considered in the context of the messily complex and complicated urban processes and phenomena that work within cities. In this paper, we present a novel architecture for achieving both simple and complicated realizations of urban sprawl in simulation. Fine-scale simulations of sprawl geography are run using geographic automata to represent the geographical drivers of sprawl in intricate detail and over fine resolutions of space and time. We use Equation-Free computing to deploy population as a coarse observable of sprawl, which can be leveraged to run automata-based models as short-burst experiments within a meta-simulation framework.

[1]  Ddt Chen,et al.  Once There Were Greenfields: How Urban Sprawl is Undermining America's Environment, Economy, and Social Fabric , 1999 .

[2]  Christopher Bone,et al.  Evaluating forest management practices using a GIS-based cellular automata modeling approach with multispectral imagery , 2007 .

[3]  A. Evans The Property Market: Ninety Per Cent Efficient? , 1995 .

[4]  Daniel G. Brown,et al.  Effects of Heterogeneity in Residential Preferences on an Agent-Based Model of Urban Sprawl , 2006 .

[5]  吳綱立 Cities of Tomorrow: An Intellectual History of Urban Planning and Design in the Twentieth Century , 2010 .

[6]  D. Kahneman Thinking, Fast and Slow , 2011 .

[7]  Michael Batty,et al.  Modeling Complexity : The Limits to Prediction , 2001 .

[8]  A. Moudon,et al.  Effects of Site Design on Pedestrian Travel in Mixed-Use, Medium-Density Environments , 1997 .

[9]  Markos A. Katsoulakis,et al.  Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles , 2003 .

[10]  Richard B. Peiser,et al.  Density and Urban Sprawl , 1989 .

[11]  M. Batty The Size, Scale, and Shape of Cities , 2008, Science.

[12]  Sidney Yip,et al.  Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator , 1998 .

[13]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[14]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[15]  P. Gordon,et al.  Are Compact Cities a Desirable Planning Goal , 1997 .

[16]  D. Helbing,et al.  Growth, innovation, scaling, and the pace of life in cities , 2007, Proceedings of the National Academy of Sciences.

[17]  S. Raudenbush,et al.  Relationship between Urban Sprawl and Physical Activity, Obesity, and Morbidity , 2003, American journal of health promotion : AJHP.

[18]  M. Batty,et al.  Urban Growth and Form: Scaling, Fractal Geometry, and Diffusion-Limited Aggregation , 1989 .

[19]  Carlo Ratti,et al.  Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis , 2006 .

[20]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[21]  Juval Portugali,et al.  Self-Organization and the City , 2009, Encyclopedia of Complexity and Systems Science.

[22]  Mitsuhiko Kawakami,et al.  Geosimulation Model Using Geographic Automata for Simulating Land-Use Patterns in Urban Partitions , 2009 .

[23]  Dor Abrahamson,et al.  NetLogo: Where We Are, Where We're Going , 2005 .

[24]  Jochen Albrecht,et al.  A New Age for Geosimulation , 2005, Trans. GIS.

[25]  Michael Batty,et al.  Dynamics of urban sprawl , 1999 .

[26]  P. Torrens,et al.  Building Agent‐Based Walking Models by Machine‐Learning on Diverse Databases of Space‐Time Trajectory Samples , 2011 .

[27]  Susan L Handy,et al.  Smart Growth and the Transportation-Land Use Connection: What Does the Research Tell Us? , 2005 .

[28]  Keith C. Clarke,et al.  The role of spatial metrics in the analysis and modeling of urban land use change , 2005, Comput. Environ. Urban Syst..

[29]  Paul M. Torrens,et al.  Calibrating and Validating Cellular Automata Models of Urbanization , 2011 .

[30]  Leigh Tesfatsion,et al.  Agent-Based Computational Economics: Growing Economies From the Bottom Up , 2002, Artificial Life.

[31]  Paul M. Torrens,et al.  Visualizing the City: Communicating Urban Design to Planners and Decision-Makers , 2001 .

[32]  Jack Lessinger The Case For Scatteration: Some Reflections on the National Capital Region Plan for the Year 2000 , 1962 .

[33]  S. Ulam A collection of mathematical problems , 1960 .

[34]  R. Imrie Urban Geography, Relevance, and Resistance to the "Policy Turn" , 2004 .

[35]  Yaolong Zhao,et al.  A New Method to Model Neighborhood Interaction in Cellular Automata-Based Urban Geosimulation , 2007, International Conference on Computational Science.

[36]  W. Clark,et al.  The Nature and Economics of Urban Sprawl , 1965 .

[37]  Elisabeth R. Gerber,et al.  Balancing Regionalism and Localism: How Institutions and Incentives Shape American Transportation Policy , 2009 .

[38]  C. Clark Urban Population Densities , 1951 .

[39]  Ioannis G. Kevrekidis,et al.  Application of Coarse Integration to Bacterial Chemotaxis , 2003, Multiscale Model. Simul..

[40]  D. Lazer,et al.  Inferring Social Network Structure using Mobile Phone Data , 2006 .

[41]  Kai Nagel,et al.  Parallel implementation of the TRANSIMS micro-simulation , 2001, Parallel Comput..

[42]  R. Walker,et al.  Linked migration systems: immigration and internal labor flows in the United States. , 1992, Economic geography.

[43]  Carol Skinner Urban Density, Meteorology and Rooftops , 2006 .

[44]  M. Batty Generative social science: Studies in agent-based computational modeling , 2008 .

[45]  Michael Batty,et al.  Geocomputation using cellular automata , 2000 .

[46]  M. Wegener Operational Urban Models State of the Art , 1994 .

[47]  M. Clawson Urban Sprawl and Speculation in Suburban Land , 1962 .

[48]  M. Alberti,et al.  Quantifying the urban gradient: Linking urban planning and ecology , 2001 .

[49]  I. G. Kevrekidis,et al.  From molecular dynamics to coarse self-similar solutions: a simple example using equation-free computation , 2003 .

[50]  Daniel Z. Sui,et al.  How Smart is Smart Growth? the Case of Austin, Texas , 2004 .

[51]  P. Calthorpe,et al.  THE REGIONAL CITY: PLANNING FOR THE END OF SPRAWL. , 2001 .

[52]  C. D. Harris,et al.  The Nature of Cities , 1945, The Urban Geography Reader.

[53]  B. Harris URBAN SIMULATION MODELS IN REGIONAL SCIENCE , 1985 .

[54]  Lucien Benguigui,et al.  City Growth as a Leap-frogging Process: An Application to the Tel-Aviv Metropolis , 2001 .

[55]  Michael J. North,et al.  Experiences creating three implementations of the repast agent modeling toolkit , 2006, TOMC.

[56]  H W Richardson,et al.  AUTOMOBILES, THE ENVIRONMENT AND METROPOLITAN SPATIAL STRUCTURE , 1994 .

[57]  Ioannis G. Kevrekidis,et al.  Coarse projective kMC integration: forward/reverse initial and boundary value problems , 2003, nlin/0307016.

[58]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[59]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[60]  Richard G. Lathrop,et al.  A Housing-Unit-Level Approach to Characterizing Residential Sprawl , 2003 .

[61]  P. Hall Cities in Civilization , 1998 .

[62]  Michael Batty,et al.  Ucl Centre for Advanced Spatial Analysis Working Papers Series Key Challenges in Agent-based Modelling for Geo-spatial Simulation Paper 121 -sept 07 Key Challenges in Agent-based Modelling for Geo-spatial Simulation , 2022 .

[63]  R. Cervero America's Suburban Centers: The Land Use-Transportation Link , 1989 .

[64]  R. Lathrop,et al.  Land resource impact indicators of urban sprawl , 2003 .

[65]  M. Batty,et al.  Form Follows Function: Reformulating Urban Population Density Functions , 1992 .

[66]  Paul M. Torrens,et al.  A Minimal Prototype for Integrating GIS and Geographic Simulation through Geographic Automata Systems , 2005 .

[67]  Walter Isard,et al.  Methods of Interregional and Regional Analysis , 1998 .

[68]  Ivonne Audirac,et al.  Ideal Urban Form and Visions of the Good Life Florida's Growth Management Dilemma , 1990 .

[69]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. Cervero The Transit Metropolis: A Global Inquiry , 1998 .

[71]  P. Sutton Modeling population density with night-time satellite imagery and GIS , 1997 .

[72]  T. Schelling Models of Segregation , 1969 .

[73]  E. Burgess “The Growth of the City: An Introduction to a Research Project” , 2020, The City Reader.

[74]  Paul M. Torrens,et al.  Polyspatial agents for multi‐Scale urban simulation and regional policy analysis* , 2012 .

[75]  David M. Theobald,et al.  LAND USE AND LANDSCAPE CHANGE IN THE COLORADO MOUNTAINS I: THEORY, SCALE, AND PATTERN , 1996 .

[76]  Howard Rheingold,et al.  Tools for Thought: The History and Future of Mind-Expanding Technology , 1985 .

[77]  Samuel Williams,et al.  The Landscape of Parallel Computing Research: A View from Berkeley , 2006 .

[78]  Robert E. Lang,et al.  Beyond Megalopolis: Exploring America’s New “Megapolitan” Geography , 2005 .

[79]  Joe Weber,et al.  Journey-to-Work Patterns in the Age of Sprawl: Evidence from Two Midsize Southern Metropolitan Areas* , 2007 .

[80]  I. Kevrekidis,et al.  Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations , 2002, physics/0212108.

[81]  Michael P. Johnson Environmental Impacts of Urban Sprawl: A Survey of the Literature and Proposed Research Agenda , 2001 .

[82]  C. Kravaris,et al.  Feedforward/feedback control of multivariable nonlinear processes , 1990 .

[83]  Peter H. Rossi,et al.  Why Families Move: A Study in the Social Psychology of Urban Residential Mobility. , 1956 .

[84]  Michael Batty,et al.  Modelling and prediction in a complex world , 2005 .

[85]  Joshua M. Epstein,et al.  Agent-based computational models and generative social science , 1999, Complex..

[86]  P. Torrens,et al.  Cellular Automata and Urban Simulation: Where Do We Go from Here? , 2001 .

[87]  William Rand,et al.  Modeling the Effects of Greenbelts at the Urban-Rural Fringe , 2002 .

[88]  Michael Batty,et al.  Fifty Years of Urban Modeling: Macro-Statics to Micro-Dynamics , 2008 .

[89]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[90]  Howard Schuman,et al.  “Chocolate city, vanilla suburbs:” Will the trend toward racially separate communities continue? , 1978 .

[91]  G. Alperovich,et al.  Population Density Gradients and Urbanisation Measurement , 1992 .

[92]  Nina Schwarz,et al.  Omnipresent Sprawl? A Review of Urban Simulation Models with Respect to Urban Shrinkage , 2010 .

[93]  Paul Schimek,et al.  Extent and correlates of walking in the USA , 2007 .

[94]  Xiaojun Yang,et al.  Urban remote sensing : monitoring, synthesis and modeling in the urban environment , 2011 .

[95]  Michael Batty,et al.  Cities and complexity - understanding cities with cellular automata, agent-based models, and fractals , 2007 .

[96]  Phil Edwards,et al.  INTEGRATED LAND USE AND TRANSPORT MODELLING. DECISION CHAINS AND HIERARCHIES , 1989 .

[97]  G. Knaap,et al.  Measuring Urban Form: Is Portland Winning the War on Sprawl? , 2004 .

[98]  Suzana Dragicevic,et al.  Incorporating spatio-temporal knowledge in an Intelligent Agent Model for natural resource management , 2010 .

[100]  Elinor Ostrom,et al.  Complexity of Coupled Human and Natural Systems , 2007, Science.

[101]  Ioannis G. Kevrekidis,et al.  Equation-free multiscale computations for a lattice-gas model: coarse-grained bifurcation analysis of the NO+CO reaction on Pt(1 0 0) , 2004 .

[102]  M. Kanda Progress in the scale modeling of urban climate: Review , 2006 .

[103]  Fahui Wang,et al.  Modelling Urban Population Densities in Beijing 1982-90: Suburbanisation and its Causes , 1999 .

[104]  K. Zielinski,et al.  Experimental Analysis of Eleven Models of Urban Population Density , 1979, Environment & planning A.

[105]  M. Batty,et al.  Building a science of cities , 2012 .

[106]  V. Masson Urban surface modeling and the meso-scale impact of cities , 2006 .

[107]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[108]  Joshua A. Fishman,et al.  Megalopolis: The Urbanized Northeastern Seaboard of the United States. , 1963 .

[109]  John I. Carruthers,et al.  Growth at the fringe: The influence of political fragmentation in United States metropolitan areas , 2003 .

[110]  Thomas Brenner,et al.  Policy Advice Derived from Simulation Models , 2009, J. Artif. Soc. Soc. Simul..

[111]  John Horgan,et al.  From Complexity to Perplexity , 1995 .

[112]  Paul A. Longley,et al.  Geodemographics and the practices of geographic information science , 2012, Int. J. Geogr. Inf. Sci..

[113]  A. Duany,et al.  Suburban Nation: The Rise of Sprawl and the Decline of the American Dream , 2000 .

[114]  Paul A. Longley,et al.  Geocomputation: a primer , 1998 .

[115]  P. Torrens A Toolkit for Measuring Sprawl , 2008 .

[116]  Y. Zou,et al.  Equation-Free Particle-Based Computations: Coarse Projective Integration and Coarse Dynamic Renormalization in 2D , 2005, math/0511528.

[117]  A. Downs New Visions For Metropolitan America , 1994 .

[118]  P.F. Gorder,et al.  Simulating Sprawl , 2004, Computing in Science & Engineering.

[119]  B. Meredith Burke,et al.  Book Review: Who Sprawls Most? How Growth Patterns Differ Across the U.S. William Fulton, Rolf Pendall, Mai Nguyen, and Alicia Harrison. Washington, DC: The Brookings Institution, July 2001 (www.brook.edu/urban/fulton%2d pendall.htm) , 2002 .

[120]  R. Ewing Is Los Angeles-Style Sprawl Desirable? , 1997 .

[121]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[122]  Timothy R. Oke,et al.  Towards better scientific communication in urban climate , 2006 .

[123]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[124]  K. Stanilov,et al.  Site Design and Pedestrian Travel , 1999 .

[125]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[126]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[127]  W. Alonso A REFORMULATION OF CLASSICAL LOCATION THEORY AND ITS RELATION TO RENT THEORY , 1967 .

[128]  P. Torrens Moving Agent Pedestrians Through Space and Time , 2012 .

[129]  Juval Portugali Complexity Theories of Cities Have Come of Age: Achievements, Criticism, and Potentials , 2011 .

[130]  R. Lang Open spaces, bounded places: Does the American west's arid landscape yield dense metropolitan growth? , 2002 .

[131]  Rolf Joseph Pendall,et al.  Do Land-Use Controls Cause Sprawl? , 1999 .

[132]  Andreas Pyka,et al.  A Pragmatic Reading of Friedman's Methodological Essay and What It Tells Us for the Discussion of ABMs , 2009, J. Artif. Soc. Soc. Simul..

[133]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[134]  Paul M. Torrens,et al.  Simulating Sprawl , 2006 .

[135]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[136]  M. Batty Urban Modelling: Algorithms, Calibrations, Predictions , 2010 .

[137]  Paul M. Torrens,et al.  Geosimulation: Object-based Modeling of Urban Phenomena , 2022 .

[138]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Bruce Edmonds,et al.  From KISS to KIDS - An 'Anti-simplistic' Modelling Approach , 2004, MABS.

[140]  Michael Batty,et al.  Cities and Complexity: Understanding Cities Through Cellular Automata, Agent-Based Models and Fractals , 2005 .

[141]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[142]  Roger G. Ghanem,et al.  Accelerating agent-based computation of complex urban systems , 2012, Int. J. Geogr. Inf. Sci..

[143]  G. Galster,et al.  Wrestling Sprawl to the Ground: Defining and measuring an elusive concept , 2001 .

[144]  Michael Batty Visually-Driven Urban Simulation: Exploring Fast and Slow Change in Residential Location , 2013 .

[145]  Joe Faith,et al.  Why Gliders Don't Exist: Anti-Reductionism and Emergence , 1998 .

[146]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[147]  Carol Atkinson-Palombo New housing construction in Phoenix: Evidence of “new suburbanism”? , 2010 .

[148]  J. Ottensmann Urban Sprawl, Land Values and the Density of Development , 1977 .

[149]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[150]  Keith C. Clarke,et al.  Calibrating a Parallel Geographic Cellular Automata Model , 2006 .

[151]  Alan Wilson Urban and regional models in geography and planning , 1974 .