The Change-of-Variance Curve and Optimal Redescending M-Estimators

Abstract We define the change-of-variance curve (CVC) of location M-estimators in order to investigate the infinitesimal stability of the asymptotic variance. We also construct the so-called hyperbolic tangent estimators, proving their existence and performing certain numerical computations of their defining constants. Their introduction is motivated by a theorem that shows they are the optimally robust redescending M-estimators in the sense of the CVC.

[1]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[2]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[3]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[4]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[5]  F. Hampel Robust estimation: A condensed partial survey , 1973 .

[6]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[7]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[8]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[9]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[10]  J. Collins Robust Estimation of a Location Parameter in the Presence of Asymmetry , 1976 .

[11]  E. Wegman,et al.  A Monte Carlo Study of Robust Estimators of Location , 1977 .

[12]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[13]  P. J. Huber Robust Statistical Procedures , 1977 .

[14]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[15]  John W. Tukey,et al.  Data Analysis and Regression: A Second Course in Statistics , 1977 .

[16]  Upper Bounds on Asymptotic Variances of $M$-Estimators of Location , 1977 .

[17]  R. Beran An Efficient and Robust Adaptive Estimator of Location , 1978 .

[18]  R. Hogg Statistical Robustness: One View of its use in Applications Today , 1979 .

[19]  Stephen M. Stigler,et al.  Studies in the History of Probability and Statistics XXXVIII R. H. SMITH, a Victorian interested in robustness , 1980 .

[20]  P. Rousseeuw A new infinitesimal approach to robust estimation , 1981 .