An energy-saving and cleaner method for recycling coal gangue and aluminium chips: Preparing in-situ nitride whiskers reinforced ceramics for thermal storage

[1]  H. Soleimani,et al.  Recent advances and impact of phase change materials on solar energy: A comprehensive review , 2022, Journal of Energy Storage.

[2]  M. Sheikholeslami Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting , 2022, Solar Energy Materials and Solar Cells.

[3]  F. Cao,et al.  Fabrication and characterization of Si 3 N 4 whisker‐reinforced SiO 2 ceramic for radome materials , 2022, International Journal of Applied Ceramic Technology.

[4]  Xudong Luo,et al.  In‐situ synthesis and interfacial bonding mechanism of SiC in MgO‐SiC‐C refractories , 2022, International Journal of Applied Ceramic Technology.

[5]  K. Cen,et al.  Applicability of coal slag for application as packed bed thermal energy storage materials , 2022, Solar Energy.

[6]  B. Leiss,et al.  Geothermal energy at different depths for district heating and cooling of existing and future building stock , 2022, Renewable and Sustainable Energy Reviews.

[7]  Xiaoyang Xu,et al.  In-situ synthesis of nitride whiskers-bonded SiAlON–Al2O3 ceramics for solar thermal storage by aluminothermic nitridation of coal-series kaolin , 2021, Ceramics International.

[8]  M. Müller,et al.  Valorisation of waste materials for high temperature thermal storage: a review , 2021, Journal of Energy Storage.

[9]  Yingjie Li,et al.  Heat release performance and evolution of CaO particles under fluidization for CaO/Ca(OH)2 thermochemical heat storage , 2021, Process Safety and Environmental Protection.

[10]  Y. Xuan,et al.  Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation , 2021 .

[11]  M. Genton,et al.  A temporal model for vertical extrapolation of wind speed and wind energy assessment , 2021 .

[12]  R. Zou,et al.  Phase change material-integrated latent heat storage systems for sustainable energy solutions , 2021, Energy & Environmental Science.

[13]  Ang Li,et al.  Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications , 2021, Nano Energy.

[14]  Naman Goyal,et al.  Thermal characteristics of sensible heat storage materials applicable for concentrated solar power systems , 2021 .

[15]  R. Senthil,et al.  A review on container geometry and orientations of phase change materials for solar thermal systems , 2021 .

[16]  G. Fang,et al.  Improved thermal properties of stearic acid/high density polyethylene/carbon fiber composite heat storage materials , 2021 .

[17]  Mehdi Shahedi Asl,et al.  Effects of SiC content on thermal shock behavior and elastic modulus of cordierite–mullite composites , 2020 .

[18]  Shuangling Dong,et al.  Study on novel molten salt-ceramics composite as energy storage material , 2020 .

[19]  Xiaoyang Xu,et al.  Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage , 2020 .

[20]  Xiaoyang Xu,et al.  A simple and clean method to prepare SiC-containing vitreous ceramics for solar thermal storage in the clay-feldspar system , 2020 .

[21]  A. Nzihou,et al.  Ceramics from Municipal Waste Incinerator Bottom Ash and Wasted Clay for Sensible Heat Storage at High Temperature , 2019, Waste and Biomass Valorization.

[22]  Jinman Wang,et al.  Comprehensive utilization and environmental risks of coal gangue: A review , 2019, Journal of Cleaner Production.

[23]  F. Cheng,et al.  Effects of reducing environment and fusible components on carbothermal reduction–nitridation reaction of coal gangue at high temperature under N2 atmosphere , 2019 .

[24]  A. Nzihou,et al.  An investigation of the physical, thermal and mechanical properties of fired clay/SiC ceramics for thermal energy storage , 2019, Journal of Thermal Analysis and Calorimetry.

[25]  Chenglong Lu,et al.  Preparation of Cordierite-mullite Ceramics for Solar Thermal Storage , 2019, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[26]  Huichao He,et al.  Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage , 2019, Renewable Energy.

[27]  Yingbin Wang,et al.  Development of spherical α-Al2O3-based composite phase change materials (PCMs) and its utilization in thermal storage building materials , 2019, Thermochimica Acta.

[28]  Xiaoyang Xu,et al.  Effect of aluminum on performances of cordierite-SiCw composite ceramics for high-temperature sensible thermal storage , 2019, Journal of Alloys and Compounds.

[29]  H. Arik,et al.  Effects of Nitridation Time and Precursor Particle Size on Yield of β-SiAlON Synthesized from Calcined Kaolinite , 2019, Powder Metallurgy and Metal Ceramics.

[30]  Xiaoyang Xu,et al.  Effect of rare-earth oxides on microstructure and thermal shock resistance of Al2O3-SiCw composite ceramics for solar thermal storage , 2019, Ceramics International.

[31]  E. Kisi,et al.  High temperature thermal storage materials with high energy density and conductivity , 2018 .

[32]  P. Muthukumar,et al.  Performance tests on lab–scale sensible heat storage prototypes , 2018 .

[33]  M. Fang,et al.  Preparation of Al2O3–SiC composite powder from kyanite tailings via carbothermal reduction process , 2018 .

[34]  Haijun Zhang,et al.  Low-temperature preparation of Si3N4 whiskers bonded/reinforced SiC porous ceramics via foam-gelcasting combined with catalytic nitridation , 2017 .

[35]  Yongping Yang,et al.  Thermal storage using sand saturated by thermal-conductive fluid and comparison with the use of concrete , 2017 .

[36]  A. Ihlal,et al.  Suitability and characteristics of rocks for sensible heat storage in CSP plants , 2017 .

[37]  G. Fang,et al.  Thermal energy storage materials and systems for solar energy applications , 2017 .

[38]  S. Ramesh,et al.  Thermal Energy Storage in Packed Pebble Bed Heat Exchanger – A Review , 2017 .

[39]  M. C. Alonso,et al.  Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants , 2016 .

[40]  J. Xia,et al.  Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar , 2015 .

[41]  Zhifeng Wang,et al.  Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system , 2013 .

[42]  A. Steinfeld,et al.  Packed-bed thermal storage for concentrated solar power: Pilot-scale demonstration and industrial-scale design , 2012 .

[43]  Patrick Echegut,et al.  Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants , 2011 .

[44]  H. Amini Mashhadi,et al.  Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux , 2009 .

[45]  V. Vinokurov,et al.  Effects of Mixture Components on Sialon Composition Homogeneity on Synthesis from Kaolins , 2004 .

[46]  A. Matuszak,et al.  New methods of aluminium and aluminium-alloy chips recycling , 2000 .

[47]  D. K. Craig,et al.  A subchronic inhalation toxicity study in rats exposed to silicon carbide whiskers. , 1991, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[48]  R. Snyder,et al.  RIR - Measurement and Use in Quantitative XRD , 1988, Powder Diffraction.