Polyethylenimine-magadiite layered silicate sorbent for CO2 capture.

This paper describes the preparation of a Layered Silicate Sorbent (LSS) for CO2 capture using the layered silicate magadiite and organo-magadiite modified with polyethylenimine (PEI). The sorbents were characterized and revealed the presence of PEI as well as its interaction with CO2 at low temperatures. The thermal stability of sorbents was confirmed by thermogravimetry experiments, and the adsorption capacity was evaluated by CO2-TPD experiments. Two kinds of PEI are present in the sorbent, one exposed PEI layer that is responsible for higher CO2 adsorption because its sites are external and another one, bulky PEI, capable of low CO2 adsorption due to the internal position of sites. The contribution of the exposed PEI layer may be increased by a previous exchange of CTA(+), but the presence of the surfactant decreased the total adsorption capacity. MAG-PEI25 reached a maximum adsorption capacity of 6.11 mmol g(-1) at 75 °C for 3 h of adsorption and showed a kinetic desorption of around 15 min at 150 °C.

[1]  W. Schwieger,et al.  Vibrational Spectroscopic Studies of Layered Silicates , 1999 .

[2]  H. O. Pastore,et al.  Aluminum magadiite : an acid solid layered material , 2007 .

[3]  P. Webley,et al.  PEI modified mesocellular siliceous foam: A novel sorbent for CO2 , 2011 .

[4]  Fengxi Chen,et al.  Characterization and thermal stability properties of intercalated Na-magadiite with cetyltrimethylammonium (C16TMA) surfactants , 2006 .

[5]  D. Caputo,et al.  Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica. , 2012, Journal of colloid and interface science.

[6]  A. Sayari,et al.  CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: Experimental and kinetic modeling , 2011 .

[7]  Liu Yan,et al.  Thermal Stable Cetyltrimethylammonium−Magadiites: Influence of the Surfactant Solution Type , 2009 .

[8]  Li-Chiang Lin,et al.  Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. , 2012, Journal of the American Chemical Society.

[9]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[10]  H. Pfeiffer,et al.  Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). , 2006 .

[11]  M. Soleimani,et al.  Carbon Dioxide Capture and Storage: A General Review on Adsorbents , 2012 .

[12]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[13]  Lin Sun,et al.  Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group , 2008 .

[14]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.

[15]  Won-Jin Son,et al.  Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials , 2008 .

[16]  P. Khare,et al.  A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA , 2013 .

[17]  A. Scaroni,et al.  Influence of Moisture on CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41 , 2005 .

[18]  Youssef Belmabkhout,et al.  Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica , 2010 .

[19]  K. Kuroda,et al.  Materials design of layered silicates through covalent modification of interlayer surfaces , 2011 .

[20]  M. Fan,et al.  Desorption Kinetics of the Monoethanolamine/Macroporous TiO2-Based CO2 Separation Process , 2011 .

[21]  Alfonso E. Garcia-Bennett,et al.  Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  J. Andresen,et al.  Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 , 2003 .

[23]  H. O. Pastore,et al.  Pillaring cetyltrimethylammonium-magadiite: a stepwise method to mesoporous materials with controlled pores sizes and distribution , 2012 .

[24]  Y. Li,et al.  Characterization of commercially available and synthesized polyethylenimines for gene delivery. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[25]  G. He,et al.  Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite , 2013 .

[26]  K. Kuroda,et al.  Preparation and characterization of silylated-magadiites , 1999 .

[27]  E. Giannelis,et al.  Efficient CO2 Sorbents Based on Silica Foam with Ultra-large Mesopores , 2012 .

[28]  Christopher W. Jones,et al.  Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources , 2010 .

[29]  Christopher W. Jones,et al.  High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules , 2011 .

[30]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[31]  H. O. Pastore,et al.  Aluminium-magadiite: from crystallization studies to a multifunctional material , 2011 .

[32]  Sushant Agarwal,et al.  Nanoclay-Based Solid Sorbents for CO2 Capture , 2013 .

[33]  M. Ogawa,et al.  Arrangements of Interlayer Quaternary Ammonium Ions in a Layered Silicate, Octosilicate , 2010 .

[34]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[35]  Aldo Steinfeld,et al.  Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel , 2011 .

[36]  G. Olah,et al.  Silica Nanoparticles as Supports for Regenerable CO2 Sorbents , 2012 .

[37]  Chunshan Song,et al.  High-Capacity and Low-Cost Carbon-Based Molecular Basket Sorbent for CO2 Capture from Flue Gas , 2011 .

[38]  H. Eugster Hydrous Sodium Silicates from Lake Magadi, Kenya: Precursors of Bedded Chert , 1967, Science.

[39]  Colin E. Snape,et al.  Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies , 2008 .

[40]  S. Takagi,et al.  Inhomogeneous decomposition of ultrathin oxide films on Si(100): application of Avrami kinetics to thermal desorption spectra. , 2008, The Journal of chemical physics.

[41]  Sangil Kim,et al.  Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. , 2005, The journal of physical chemistry. B.

[42]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[43]  A. Samanta,et al.  Carbon Dioxide Adsorption on Amine-Impregnated Mesoporous SBA-15 Sorbents: Experimental and Kinetics Study , 2013 .

[44]  Chunshan Song,et al.  Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents , 2012 .

[45]  Y. Ide,et al.  Precisely designed layered silicate as an effective and highly selective CO2 adsorbent. , 2013, Chemical communications.

[46]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[47]  Jitong Wang,et al.  Surfactant promoted solid amine sorbents for CO2 capture , 2012 .

[48]  Eunice F. S. Vieira,et al.  The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica--a kinetic study. , 2006, Journal of hazardous materials.

[49]  F. Kooli Effect of C16TMA contents on the thermal stability of organo-bentonites: In situ X-ray diffraction analysis , 2013 .

[50]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[51]  Diana N. Tran,et al.  Ethylenediamine-modified SBA-15 as Regenerable CO2 Sorbent , 2005 .

[52]  Berend Smit,et al.  Carbon Dioxide Capture: Prospects for New Materials , 2010 .

[53]  S. Maitra,et al.  Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay , 2013 .

[54]  A. Stacy,et al.  Temperature‐programmed desorption: Multisite and subsurface diffusion models , 1988 .

[55]  Jitong Wang,et al.  Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons. , 2013, Journal of environmental sciences.

[56]  David C. Miller,et al.  Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica , 2013 .

[57]  Yi Zhao,et al.  Synthesis and CO₂ adsorption properties of molecularly imprinted adsorbents. , 2012, Environmental science & technology.

[58]  Chunshan Song,et al.  A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification , 2007 .

[59]  H. O. Pastore,et al.  One-Step Synthesis of Alkyltrimethylammonium-Intercalated Magadiite , 2000 .

[60]  M. Pera‐Titus,et al.  Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture , 2012 .

[61]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[62]  N. Hedin,et al.  Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-propylamines. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[63]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[64]  Xiaoxing Wang,et al.  Mesoporous-molecular-sieve-supported Polymer Sorbents for Removing H2S from Hydrogen Gas Streams , 2008 .

[65]  G. Olah,et al.  Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents , 2010 .

[66]  J. L. Caillerie,et al.  Hydration Water and Swelling Behavior of Magadiite. The H+, Na+, K+, Mg2+, and Ca2+ Exchanged Forms , 2002 .

[67]  Youssef Belmabkhout,et al.  Stabilization of amine-containing CO(2) adsorbents: dramatic effect of water vapor. , 2010, Journal of the American Chemical Society.

[68]  Jiawei Wang,et al.  Preparation and CO2 adsorption of amine modified Mg–Al LDH via exfoliation route , 2012 .

[69]  A. Sayari,et al.  CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. , 2012, Journal of the American Chemical Society.

[70]  Xiaoxing Wang,et al.  Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve , 2009 .

[71]  J. Silvestre-Albero,et al.  CO2 adsorption on carbon molecular sieves , 2012 .

[72]  Chunshan Song,et al.  Development of a new clay supported polyethylenimine composite for CO2 capture , 2014 .

[73]  E. M. Flanigen,et al.  Infrared Structural Studies of Zeolite Frameworks , 1974 .

[74]  E. S. Sanz-Pérez,et al.  Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation , 2013 .

[75]  A. C. Chang,et al.  In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with γ-(Aminopropyl)triethoxysilane , 2003 .

[76]  Xingzhen Zhou,et al.  Covalent-organic polymers for carbon dioxide capture , 2012 .

[77]  Youssef Belmabkhout,et al.  Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies , 2010 .

[78]  Chunshan Song,et al.  Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: Characterization and sorption properties , 2013 .

[79]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[80]  Xiaoxing Wang,et al.  A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. , 2012, Physical chemistry chemical physics : PCCP.