Sustainable water resources management under increasing water demands and changing climate conditions is a central, socio-political challenge, in particular in climate sensitive regions. Decisions in sustainable water resources management require scientifically sound information of the current water resources and fluxes and future water availability.
The first objective of this work is to provide estimations of the current water resources and fluxes in a poorly gauged basin, the White Volta basin in West Africa. This is a central task to support water management authorities and stakeholders in operational irrigation, water supply and running hydro-power strategies. To allow investigations in ungauged or poorly gauges basins, these instruments and methods should be applicable world wide, cost-effective and preferably public domain. In poorly gauged basins without automatic data recorders and online transmission other meteorological data sources for near real time estimations of the terrestrial water balance have to be used to overcome the temporal delay and/or the insufficient spatial resolution. Therefore, a joint atmospheric-hydrological modelling system with MM5 and WaSiM is developed which is able to provide near real time water balance estimations within 48 h. Additionally to meteorological modelling results and observation data, a TRMM product, which is available with approximately one month delay, is applied as precipitation data source.
Besides meteorological driving data, land surface properties are essential input data for distributed hydrological modelling. Land surface properties information is usually taken from standard literature values and incorporated into hydrological modelling through tables depending on the land use. The second objective of this work is to increase the level of detail in the spatial and temporal dimension of land surface properties in hydrological modelling using satellite derived land surface properties and to investigate the impact on hydrological modelling results. In this study, products of the MODerate resolution Imaging Spectroradiometer (MODIS) remote sensing system for albedo and leaf area index LAI are imported into the hydrological model and investigated.
For sustainable decisions in water resources management, additionally to the modelling result itself, the reliability or uncertainty of the result has to be quantified. Due to the fact that the spatial variability of rainfall is often termed as the major source of error in investigations of rainfall-runoff processes and modelling, the propagation of uncertainties, resulting from the calculation of areal precipitation from point measurements in water balance estimations, are investigated as third objective. Therefore, different spatial interpolation methods, including external drift kriging, for areal precipitation are applied, and their impact on water balance estimates is analysed. Furthermore, geostatistical simulations using the turning band method for areal precipitation are performed in order to investigate the propagation of uncertainties in water balance estimations. These results provide ranges of the temporal and spatial distribution of water balance variables as consequence of uncertainties from the calculation of areal precipitation from station data.
Auf Grund der steigenden Nachfrage und mit der globalen Erwarmung verbundenen Anderung des Wasserdargebots ist nachhaltiges Wassermanagement insbesondere in klimasensitiven Regionen eine zentrale, gesellschaftspolitisch relevante Herausforderung. Nachhaltige Wassermanagemententscheidungen erfordern wissenschaftlich fundierte Informationen uber die aktuell verfugbaren Wasserressourcen und zukunftige Wasserverfugbarkeit. In dieser Arbeit wurden Instrumente und Methoden fur die Abschatzung der aktuell verfugbaren Wasserressourcen fur das Einzugsgebiet der Weisen Volta in Westafrika entwickelt und angewendet.
Ein zentrales Instrument zur Entscheidungsunterstutzung fur nachhaltiges Wassermanagement ist die hydrologische Modellierung, die Informationen uber die raumliche und zeitliche Veranderung von Wasserhaushaltsgrosen liefert. Die hydrologische Modellierung benotigt meteorologische Eingangsdaten, deren Verfugbarkeit in ausreichender zeitlicher und raumlicher Auflosung insbesondere in infrastrukturschwachen Einzugsgebieten eine grose Herausforderung darstellt. Daruber hinaus sind Stationsdaten oft nur mit einer betrachtlichen zeitlichen Verzogerung verfugbar und damit ungeeignet fur kurzfristige Wassermanagemententscheidungen, z. B. fur operationelle Bewasserungs-, Wasserversorgungs- oder Wasserkraftanlagenstrategien. Vor diesem Hintergrund wurde in dieser Arbeit erstens untersucht, inwieweit, zusatzlich zu Stationsdaten, das meteorologische Modell MM5 in der Lage ist meteorologische Felder mit ausreichender Genauigkeit fur die flachendifferenzierte Wasserhaushaltsmodellierung mit WaSiM zu liefern. Als weitere Datenquelle fur den Niederschlag wurde das skalierte TRMM Produkt 3B42 verwendet, das mit einer zeitlichen Verzogerung von ungefahr einem Monat verfugbar ist.
Neben meteorologischen Antriebsdaten sind Landoberflachenparameter zentrale Eingangsdaten fur die flachendifferenzierte hydrologische Modellierung. In den hydrologischen Modellen werden normalerweise Standardliteraturwerte fur die Landoberflachenparameter verwendet, die als Tabellenwerte abhangig von der Landnutzung abgeleitet werden. Fur eine detailliertere raumliche und zeitliche Beschreibung der Landoberflachenparameter wurden in dieser Arbeit zweitens die Moglichkeiten untersucht, Albedo und Blattflachenindex LAI aus multispektralen Fernerkundungsdaten (MODIS) abzuleiten. Dabei wurde der Einfluss der dynamischen Abschatzungen von Landoberflachenparameter aus Fernerkundungsdaten, im Vergleich zu statischen Tabellenwerten, auf die Ergebnisse der hydrologischen Simulationen analysiert.
Zur Entscheidungsunterstutzung fur nachhaltiges Wassermanagement ist zusatzlich zu den Modellierungsergebnissen eine Quantifizierung der Zuverlassigkeit bzw. Unsicherheit dieser Ergebnisse erforderlich. Dabei wird die richtige Abschatzung der raumlichen Variabilitat des Niederschlags oft als Hauptfehlerquelle bei Untersuchungen der Niederschlags-Abfluss-Prozesse sowie deren Modellierung genannt. Demzufolge wurden in dieser Arbeit drittens die Auswirkungen der Niederschlagsunsicherheiten, die sich aus der erforderlichen raumlichen Interpolation von Stationsdaten (Punktmessungen) ergeben, auf die Ergebnisse der hydrologischen Modellierung untersucht. Insbesondere in Regionen, wo wenige Beobachtungsdaten zur Verfugung stehen, und somit die Dichte des Messnetzes sehr gering ist, ist die raumliche Interpolation mit grosen Unsicherheiten behaftet. Dafur wurden verschiedene raumliche Interpolationsmethoden, inklusive „external drift kriging“, zur Ermittlung des Gebietsniederschlages aus Stationsdaten angewendet und deren Einfluss auf die hydrologischen Simulationsergebnisse untersucht. Zusatzlich zu den verschieden Interpolationsverfahren wurden Niederschlagsfelder mittels bedingter Simulationen („turning bands“) generiert. Die mit den generierten, gleichwahrscheinlichen Niederschlagsfeldern durchgefuhrten hydrologischen Simulationen liefern Spannbreiten der zeitlichen und raumlichen Verteilung der Wasserhaushaltsgrosen. Diese Spannbreiten beinhalten die Unsicherheiten, die auf die Berechnung des Gebietsniederschlags zuruckzufuhren sind.
[1]
John L. Monteith,et al.
Vegetation and the atmosphere
,
1975
.
[2]
M. G. Anderson.
Encyclopedia of hydrological sciences.
,
2005
.
[3]
Ruth M. Doherty,et al.
African climate change: 1900-2100
,
2001
.
[4]
J. Monteith,et al.
Boundary Layer Climates.
,
1979
.
[5]
A. A. Sokolov,et al.
World water balance and water resources of the earth
,
1978
.
[6]
R. Treadon,et al.
A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction
,
1997
.
[7]
Dominique Tapsoba,et al.
Rainfall Variability in West Africa during the Years 1950-90
,
2002
.
[8]
Ranga B. Myneni,et al.
Estimation of global leaf area index and absorbed par using radiative transfer models
,
1997,
IEEE Trans. Geosci. Remote. Sens..
[9]
D. Durran,et al.
An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models
,
1983
.
[10]
Y. Hong,et al.
The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales
,
2007
.
[11]
P. Rousseeuw,et al.
Wiley Series in Probability and Mathematical Statistics
,
2005
.
[12]
S. Wagner,et al.
Uncertainties in water balance estimations due to scarce meteorological information : a case study for the White Volta catchment in West Africa
,
2007
.
[13]
Peter K. Kitanidis,et al.
Introduction to geostatistics
,
1997
.
[14]
J. Klemp,et al.
The Simulation of Three-Dimensional Convective Storm Dynamics
,
1978
.
[15]
S. Nicholson.
Climatic and environmental change in Africa during the last two centuries
,
2001
.
[16]
S. Running,et al.
Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data
,
2002
.
[17]
Alan K. Betts,et al.
A new convective adjustment scheme
,
1985
.
[18]
V. Singh,et al.
Computer Models of Watershed Hydrology
,
1995
.
[19]
J. Bader,et al.
The Role of the Tropical Indian Ocean in Global Climate
,
2005
.
[20]
Leon G. Higley,et al.
Forensic Entomology: An Introduction
,
2009
.
[21]
Henrik Madsen,et al.
Concepts of Hydrologic Modeling
,
2006
.
[22]
Christopher Conrad,et al.
Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information
,
2009
.
[23]
S. Liang.
Narrowband to broadband conversions of land surface albedo I Algorithms
,
2001
.
[24]
Robert W. Burpee.
The Origin and Structure of Easterly Waves in the Lower Troposphere of North Africa
,
1971
.
[25]
W. Andah,et al.
Volta Basin Water Balance
,
2000
.
[26]
T. Schmugge,et al.
Remote sensing in hydrology
,
2002
.
[27]
R. Geiger,et al.
The Climate near the Ground
,
1951
.
[28]
Gerlinde Jung,et al.
Regional climate change and the impact on hydrology in the volta basin of West Africa
,
2006
.
[29]
Clayton V. Deutsch,et al.
GSLIB: Geostatistical Software Library and User's Guide
,
1993
.
[30]
John Doe,et al.
Soil Map of the World
,
1962
.
[31]
Olivier Planchon,et al.
Hydrological processes in a small humid savanna basin (Ivory Coast)
,
1993
.
[32]
Soroosh Sorooshian,et al.
Spatial characteristics of thunderstorm rainfall fields and their relation to runoff
,
2003
.
[33]
D. Roy,et al.
Achieving sub-pixel geolocation accuracy in support of MODIS land science
,
2002
.
[34]
Keith Beven,et al.
Changing ideas in hydrology — The case of physically-based models
,
1989
.
[35]
Mamdouh Shahin,et al.
Hydrology and water resources of Africa
,
2002
.
[36]
R. Pielke.
Mesoscale Meteorological Modeling
,
1984
.
[37]
A. Bárdossy,et al.
SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS
,
1992
.
[38]
A. R. Orme,et al.
The physical geography of Africa
,
1997
.
[39]
G. Matheron.
The intrinsic random functions and their applications
,
1973,
Advances in Applied Probability.
[40]
Xiaoxiong Xiong,et al.
On-orbit performance of the Earth Observing System Moderate Resolution Imaging Spectroradiometer; first year of data
,
2002
.
[41]
Markus Quante,et al.
Water in the Earth's atmosphere
,
2006
.
[42]
J. Privette,et al.
Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari
,
2002
.
[43]
G. Grell,et al.
A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)
,
1994
.
[44]
Eirah Gorre-Dale,et al.
The Dublin Statement on Water and Sustainable Development
,
1992,
Environmental Conservation.
[45]
Noel A Cressie,et al.
Statistics for Spatial Data.
,
1992
.
[46]
A. Mantoglou,et al.
The Turning Bands Method for simulation of random fields using line generation by a spectral method
,
1982
.
[47]
Yves M. Govaerts,et al.
Surface albedo response to sahel precipitation changes
,
2007
.
[48]
L. Druyan,et al.
The sensitivity of sub-Saharan precipitation to Atlantic SST
,
1991
.
[49]
Thierry Lebel,et al.
Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990
,
1997
.
[50]
D. Roy,et al.
The MODIS Land product quality assessment approach
,
2002
.
[51]
Derek F. Hayward,et al.
Climatology of West Africa
,
1987
.
[52]
Dennis P. Lettenmaier,et al.
Spatial Patterns in Catchment Hydrology: Observations and Modeling
,
2004
.
[53]
Christopher Conrad,et al.
TiSeG: A Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set
,
2008,
IEEE Transactions on Geoscience and Remote Sensing.
[54]
Maria-Theresia Schafmeister.
Geostatistik für die hydrogeologische Praxis
,
1999
.
[55]
Mark Z. Jacobson,et al.
Fundamentals of atmospheric modeling
,
1998
.
[56]
L. Ruby Leung,et al.
Regional climate modeling: Progress, challenges, and prospects
,
2004
.
[57]
Harald Kunstmann,et al.
Climate trends of temperature, precipitation and river discharge in the Volta Basin of West Africa
,
2007
.
[58]
W. Brutsaert.
Evaporation into the atmosphere
,
1982
.
[59]
Alan H. Strahler,et al.
The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research
,
1998,
IEEE Trans. Geosci. Remote. Sens..
[60]
L. A. Richards.
Capillary conduction of liquids through porous mediums
,
1931
.
[61]
Souheil Ezzedine,et al.
Stochastic Modeling of Flow and Transport in Porous and Fractured Media
,
2006
.
[62]
D. Roy,et al.
An overview of MODIS Land data processing and product status
,
2002
.
[63]
Alan H. Strahler,et al.
An algorithm for the retrieval of albedo from space using semiempirical BRDF models
,
2000,
IEEE Trans. Geosci. Remote. Sens..
[64]
J. Hicke,et al.
Global synthesis of leaf area index observations: implications for ecological and remote sensing studies
,
2003
.
[65]
E. D. Martonne.
L'indice d'aridité
,
1926
.
[66]
Erwin Zehe,et al.
Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation
,
2005
.