Ignition and chemical kinetics of acrolein–oxygen–argon mixtures behind reflected shock waves

[1]  J. Shepherd,et al.  Ignition delay-time behind reflected shock waves of small hydrocarbons–nitrous oxide(–oxygen) mixtures , 2015 .

[2]  Zuo-hua Huang,et al.  A shock tube and kinetic modeling study of n-butanal oxidation , 2013 .

[3]  S. Mani Sarathy,et al.  Experimental and modeling study of the oxidation of n- and iso-butanal , 2013 .

[4]  J. Shepherd,et al.  Dynamics of excited hydroxyl radicals in hydrogen-based mixtures behind reflected shock waves , 2013 .

[5]  O. Mathieu,et al.  $\mathrm{CO}_{2}^{*}$ chemiluminescence study at low and elevated pressures , 2012 .

[6]  R. Mével,et al.  Assessment of H2-CH4-air mixtures oxidation kinetic models used in combustion , 2012 .

[7]  C. Malins,et al.  Biodiesel carbon intensity, sustainability and effects on vehicles and emissions , 2012 .

[8]  Sonja van Renssen A biofuel conundrum , 2011 .

[9]  J. Bergthorson,et al.  Ignition of C3 oxygenated hydrocarbons and chemical kinetic modeling of propanal oxidation , 2011 .

[10]  R. Mével,et al.  A chemical kinetic study of the oxidation of silane by nitrous oxide, nitric oxide and oxygen , 2011 .

[11]  C. Togbé,et al.  Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations , 2011 .

[12]  J. Bozzelli,et al.  Quantum chemical study of the acrolein (CH2CHCHO) + OH + O2 reactions. , 2010, The journal of physical chemistry. A.

[13]  Leonidas Ntziachristos,et al.  Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: impact on carbonyl compound emissions. , 2010, Environmental pollution.

[14]  L. Ntziachristos,et al.  Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: feedstock impact on regulated pollutants, fuel consumption and particle emissions. , 2010, Environmental pollution.

[15]  Ronald K. Hanson,et al.  Ignition Delay Time Measurements of Normal Alkanes and Simple Oxygenates , 2010 .

[16]  John M. Simmie,et al.  Bio-butanol: Combustion properties and detailed chemical kinetic model , 2010 .

[17]  Chao He,et al.  Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel , 2009 .

[18]  Lilian L. N. Guarieiro,et al.  Emission profile of 18 carbonyl compounds, CO, CO2, and NOx emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils , 2009 .

[19]  H. Pitsch,et al.  Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors , 2009 .

[20]  R. Mével,et al.  Hydrogen–nitrous oxide delay times: Shock tube experimental study and kinetic modelling , 2009 .

[21]  L. Catoire,et al.  Induction Delay Times and Detonation Cell Size Prediction of Hydrogen-Nitrous Oxide-Diluent Mixtures , 2008 .

[22]  O. Faroon,et al.  Acrolein health effects , 2008, Toxicology and industrial health.

[23]  J. Seitzman,et al.  Evaluation of Chemiluminescence as a Combustion Diagnostic under Varying Operating Conditions , 2008 .

[24]  H. Pitsch,et al.  Thermochemical properties of polycyclic aromatic hydrocarbons (PAH) from G3MP2B3 calculations. , 2007, The journal of physical chemistry. A.

[25]  Chih-Jen Sung,et al.  Reaction kinetics of CO + HO(2) --> products: ab initio transition state theory study with master equation modeling. , 2007, The journal of physical chemistry. A.

[26]  Tanh Le Cong Etude expérimentale et modélisation de la cinétique de combustion de combustibles gazeux : méthane, gaz naturel et mélanges contenant de l’hydrogène, du monoxyde de carbone, du dioxyde de carbone et de l’eau , 2007 .

[27]  E. Petersen,et al.  An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures , 2006 .

[28]  J. Bozzelli,et al.  Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals. , 2006, The journal of physical chemistry. A.

[29]  A. Ristori,et al.  The combustion of kerosene : Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels , 2006 .

[30]  E. Petersen,et al.  Ignition and Oxidation of Ethylene-Oxygen-Diluent Mixtures with and Without Silane , 2005 .

[31]  M. Rickard,et al.  COMPARISON OF CHARACTERISTIC TIME DIAGNOSTICS FOR IGNITION AND OXIDATION OF FUEL/OXIDIZER MIXTURES BEHIND REFLECTED SHOCK WAVES , 2005 .

[32]  R. Hanson,et al.  A SHOCK TUBE STUDY OF THE OXIDATION OF 1,3-BUTADIENE , 2004 .

[33]  J. Orlando,et al.  Mechanisms for the Reactions of OH with Two Unsaturated Aldehydes: Crotonaldehyde and Acrolein , 2002 .

[34]  Jay B. Jeffries,et al.  Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence , 2002 .

[35]  Ronald K. Hanson,et al.  Study of the High-Temperature Autoignition of n-Alkane/O/Ar Mixtures , 2002 .

[36]  C. Paillard,et al.  Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves , 2002 .

[37]  K. Devriendt,et al.  Kinetics of formation of chemiluminescent CH(A2Δ) by the elementary reactions of C2H(X2 Σ+) with O(3P) and O2(X3Σg−): A pulse laser photolysis study , 1996 .

[38]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[39]  Y. Hidaka,et al.  Shock-tube study of the rate constant for excited hydroxyl (OH*(2.SIGMA.+)) formation in the nitrous oxide-molecular hydrogen reaction , 1985 .

[40]  A. Grillo,et al.  High temperature rate coefficient measurements of CO + O chemiluminescence , 1985 .

[41]  W. Gardiner,et al.  Shock-tube measurement of the rate constant for excited hydroxyl(A2.SIGMA.+) formation in the hydrogen-oxygen reaction , 1982 .

[42]  B. Myers,et al.  CO Oxidation. I. Induction Period Preceding CO2 Formation in Shock‐Heated CO–O2–Ar Mixtures , 1965 .