Ab initio pseudopotentials for Hg through Rn

Quasirelativistic and nonrelativistic energy adjusted ab initio pseudopotentials for the elements Hg through Rn are presented together with corresponding optimized valence basis sets. Core-valence correlation is accounted for by semiempirical polarization potentials. Corrections to the point charge repulsion in the core-nucleus interaction for subsequent molecular calculations are also provided. The reliability of the pseudopotential method is demonstrated in atomic test calculations for electron affinities, excitation and ionization energies as well as spin-orbit splittings by comparison with nonrelativistic, quasirelativistic and relativistic all-electron data. Results obtained by means of two quasirelativistic configuration interaction schemes that include spin-orbit coupling are compared with experimental data.

[1]  Y. Ishikawa,et al.  Effective core potentials for fully relativistic Dirac–Fock calculations , 1981 .

[2]  Hermann Stoll,et al.  A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .

[3]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the rare earth elements , 1989 .

[4]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[5]  W. R. Wadt An approximate method to incorporate spin—orbit effects into calculations using effective core potentials , 1982 .

[6]  M. Pélissier,et al.  Ab initio molecular calculations including spin-orbit coupling. I. Method and atomic tests , 1983 .

[7]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[8]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations , 1983 .

[9]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[10]  P. Hay Abinitio studies of excited states of polyatomic molecules including spin‐orbit and multiplet effects: The electronic states of UF6 , 1983 .

[11]  First order perturbation treatments for relativistic pseudopotentials and corrections to the Hartree-Fock method , 1981 .

[12]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[13]  P. Fuentealba,et al.  On the reliability of semi-empirical pseudopotentials: simulation of Hartree-Fock and Dirac-Fock results , 1983 .

[14]  N. Pyper Relativistic pseudopotential theories and corrections to the Hartree-Fock method , 1980 .

[15]  H. Stoll,et al.  Pseudopotential study of the rare earth monohydrides, monoxides and monofluorides , 1989 .

[16]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[17]  J. Bearden,et al.  Atomic energy levels , 1965 .

[18]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements: Molecular test for M2 (M=Ag, Au) and MH (M=Ru, Os) , 1991 .

[19]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[20]  P. A. Christiansen,et al.  IMPROVED Ab Initio EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS , 1979 .

[21]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[22]  W. Meyer,et al.  Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .

[23]  P. Fuentealba,et al.  Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions , 1982 .

[24]  B. Silvi,et al.  Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials , 1988 .

[25]  Hermann Stoll,et al.  Pseudopotentials for main group elements (IIIa through VIIa) , 1988 .

[26]  P. Durand,et al.  A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids , 1975 .

[27]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[28]  Russell M. Pitzer,et al.  Electronic-structure methods for heavy-atom molecules , 1988 .

[29]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. I. Diatomic gold compounds , 1989 .

[30]  Michael Dolg,et al.  Energy-adjusted pseudopotentials for the rare earth elements , 1989 .

[31]  H. Stoll,et al.  Ab initio pseudopotential study of the 9Σ− and 7Σ− states of GdO , 1990 .

[32]  H. Preuss,et al.  THE LOW-LYING ELECTRONIC STATES OF CERIUM MONOXIDE CEO : AB INITIO CALCULATIONS USING ENERGY-ADJUSTED PSEUDOPOTENTIALS AND SPIN-ORBIT OPERATORS , 1991 .

[33]  Hermann Stoll,et al.  Pseudopotential calculations for alkaline-earth atoms , 1985 .

[34]  H. Stoll,et al.  Abinitio pseudopotential study of the first row transition metal monoxides and iron monohydride , 1987 .

[35]  R. E. Watson,et al.  Theory of spin-orbit coupling in atoms I. Derivation of the spin-orbit coupling constant , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[37]  M. Klobukowski Nonrelativistic and quasirelativistic model potential calculations on AgH and Ag2 , 1983 .

[38]  H. Stoll,et al.  Ab initio pseudopotential study of europium monoxide EuO: 8Σ− Ground state and 8Σ− first excited state , 1990 .

[39]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[40]  W. Johnson,et al.  Electric and magnetic susceptibilities and shielding factors for closed-shell atoms and ions of high nuclear charge , 1982 .

[41]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[42]  Bruce A. Murtagh,et al.  Computational Experience with Quadratically Convergent Minimisation Methods , 1970, Comput. J..

[43]  K. Balasubramanian,et al.  Electronic states, ionization potentials, and bond energies of TlHn, InHn, TlH+n, and InH+n (n=1–3) , 1991 .

[44]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[45]  P. Fuentealba,et al.  Ground‐state properties of alkali dimers XY (X, Y=Li to Cs) , 1986 .

[46]  A. Chang,et al.  Electronic structure and spectra of uranocene , 1989 .

[47]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[48]  W. Meyer,et al.  Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .

[49]  W. Kutzelnigg The relativistic many body problem in molecular theory , 1987 .

[50]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .