Coarse Quad Layouts Through Robust Simplification of Cross Field Separatrix Partitions

Streamline-based quad meshing algorithms use smooth cross fields to partition surfaces into quadrilateral regions by tracing cross field separatrices. In practice, reentrant corners and misalignment of singularities lead to small regions and limit cycles, negating some of the benefits a quad layout can provide in quad meshing. We introduce three novel methods to improve on a pipeline for coarse quad partitioning. First, we formulate an efficient method to compute high-quality cross fields on curved surfaces by extending the diffusion generated method from Viertel and Osting (SISC, 2019). Next, we introduce a method for accurately computing the trajectory of streamlines through singular triangles that prevents tangential crossings. Finally, we introduce a robust method to produce coarse quad layouts by simplifying the partitions obtained via naive separatrix tracing. Our methods are tested on a database of 100 objects and the results are analyzed. The algorithm performs well both in terms of efficiency and visual results on the database when compared to state-of-the-art methods.

[1]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[2]  Xianfeng Gu,et al.  Generalized Regular Quadrilateral Mesh Generation based on Surface Foliation , 2017 .

[3]  Tao Ju,et al.  Extrinsically smooth direction fields , 2016, Comput. Graph..

[4]  N. Yip,et al.  Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach , 2018, Archive for Rational Mechanics and Analysis.

[5]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[6]  Konrad Polthier,et al.  Optimal base complexes for quadrilateral meshes , 2017, Comput. Aided Geom. Des..

[7]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[8]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[9]  Dmitry Sokolov,et al.  Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces , 2013, ACM Trans. Graph..

[10]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[11]  Harold J. Fogg,et al.  Automatic generation of multiblock decompositions of surfaces , 2015 .

[12]  David Martineau,et al.  Automated Two-Dimensional Multi-block Meshing Using the Medial Object , 2011, IMR.

[13]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[14]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[15]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[16]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[17]  Braxton Osting,et al.  An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory , 2017, SIAM J. Sci. Comput..

[18]  Valerio Pascucci,et al.  Consistent Approximation of Local Flow Behavior for 2D Vector Fields using Edge Maps , 2011 .

[19]  Arthur J. Schwartz,et al.  Errata: A Generalization of a Poincare-Bendixson Theorem to Closed Two-Dimensional Manifolds , 1963 .

[20]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[21]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[22]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[23]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[24]  Marcel Campen,et al.  Partitioning Surfaces Into Quadrilateral Patches: A Survey , 2017, Comput. Graph. Forum.

[25]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[26]  Jun-Hai Yong,et al.  Automatic Quad Patch Layout Extraction for Quadrilateral Meshes , 2015 .

[27]  Konrad Polthier,et al.  Perfect Matching Quad Layouts for Manifold Meshes , 2015, SGP '15.

[28]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[29]  Jack Xin,et al.  Diffusion-Generated Motion by Mean Curvature for Filaments , 2001, J. Nonlinear Sci..

[30]  Harold J. Fogg,et al.  Multi_Block Decomposition Using Cross-Fields , 2013 .

[31]  David Eppstein,et al.  Motorcycle Graphs: Canonical Quad Mesh Partitioning , 2008, Comput. Graph. Forum.

[32]  Elaine Cohen,et al.  Quadrilateral mesh simplification , 2008, SIGGRAPH Asia '08.

[33]  Dana R. Lindquist,et al.  A comparison of numerical schemes on triangular and quadrilateral meshes , 1989 .

[34]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[35]  Franck Ledoux,et al.  A PDE Based Approach to Multidomain Partitioning and Quadrilateral Meshing , 2012, IMR.

[36]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[37]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[38]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[39]  Steven E. Benzley,et al.  Hexahedral Sheet Extraction , 2002, IMR.

[40]  Christophe Geuzaine,et al.  Computing two dimensional cross fields - A PDE approach based on the Ginzburg-Landau theory , 2017, ArXiv.

[41]  Paolo Cignoni,et al.  Tracing Field‐Coherent Quad Layouts , 2016, Comput. Graph. Forum.