A Note on the Space Complexity of Some Decision Problems for Finite Automata

In this note, we establish the space complexity of decision problems (such as membership, nonemptiness and equivalence) for some finite automata. Our study includes 2-way infinite automata with a pebble.

[1]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..

[2]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[3]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[4]  Harry B. Hunt,et al.  On the time and tape complexity of languages I , 1973, STOC.

[5]  Richard J. Lipton,et al.  Alternating Pushdown and Stack Automata , 1984, SIAM J. Comput..

[6]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[7]  Richard J. Lipton,et al.  Alternating Pushdown Automata (Preliminary Report) , 1978, FOCS.

[8]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[9]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[10]  Tao Jiang,et al.  The Structure and Complexity of Minimal NFA's over a Unary Alphabet , 1991, Int. J. Found. Comput. Sci..

[11]  Václav Koubek,et al.  Alternation with a Pebble , 1991, Inf. Process. Lett..

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  M. Blum,et al.  Automata on a 2-Dimensional Tape , 1967, SWAT.

[14]  Tao Jiang,et al.  Minimal NFA Problems Are Hard , 1991, ICALP.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Dung T. Huynh,et al.  On a Complexity Hierarchy Between L and NL , 1988, Inf. Process. Lett..

[17]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[18]  Tao Jiang,et al.  On Some Languages in NC , 1988, AWOC.

[19]  Neil D. Jones,et al.  Space-Bounded Reducibility among Combinatorial Problems , 1975, J. Comput. Syst. Sci..